Suppr超能文献

使用结构方程模型验证社交媒体信息疫情监测概念框架的一部分。

Validating part of the social media infodemic listening conceptual framework using structural equation modelling.

作者信息

Tsao Shu-Feng, Chen Helen, Butt Zahid A

机构信息

School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Ontario, Canada.

出版信息

EClinicalMedicine. 2024 Mar 14;70:102544. doi: 10.1016/j.eclinm.2024.102544. eCollection 2024 Apr.

Abstract

BACKGROUND

The literature has identified various factors that promote or hinder people's intentions towards COVID-19 vaccination, and structural equation modelling (SEM) is a common approach to validate these associations. We propose a conceptual framework called social media infodemic listening (SoMeIL) for public health behaviours. Hypothesizing parameters retrieved from social media platforms can be used to infer people's intentions towards vaccination behaviours. This study preliminarily validates several components of the SoMeIL conceptual framework using SEM and Twitter data and examines the feasibility of using Twitter data in SEM research.

METHODS

A total of 2420 English tweets in Toronto or Ottawa, Ontario, Canada, were collected from March 8 to June 30, 2021. Confirmatory factor analysis and SEM were applied to validate the SoMeIL conceptual framework in this cross-sectional study.

FINDINGS

The results showed that sentiment scores, the log-numbers of favourites and retweets of a tweet, and the log-numbers of a user's favourites, followers, and public lists had significant direct associations with COVID-19 vaccination intention. The sentiment score of a tweet had the strongest relationship, whereas a user's number of followers had the weakest relationship with the intention of COVID-19 vaccine uptake.

INTERPRETATION

The findings preliminarily validate several components of the SoMeIL conceptual framework by testing associations between self-reported COVID-19 vaccination intention and sentiment scores and the log-numbers of a tweet's favourites and retweets as well as users' favourites, followers, and public lists. This study also demonstrates the feasibility of using Twitter data in SEM research. Importantly, this study preliminarily validates the use of these six components as online reaction behaviours in the SoMeIL framework to infer the self-reported COVID-19 vaccination intentions of Canadian Twitter users in two cities.

FUNDING

This study was supported by the 2023-24 Ontario Graduate Scholarship.

摘要

背景

文献中已确定了多种促进或阻碍人们接种新冠疫苗意愿的因素,结构方程模型(SEM)是验证这些关联的常用方法。我们提出了一个名为社交媒体信息疫情监测(SoMeIL)的公共卫生行为概念框架。假设从社交媒体平台获取的参数可用于推断人们的疫苗接种行为意愿。本研究使用SEM和推特数据初步验证了SoMeIL概念框架的几个组成部分,并探讨了在SEM研究中使用推特数据的可行性。

方法

2021年3月8日至6月30日,在加拿大安大略省多伦多市或渥太华市共收集了2420条英文推文。在这项横断面研究中,采用验证性因子分析和SEM来验证SoMeIL概念框架。

结果

结果表明,推文的情感得分、点赞数和转发数的对数,以及用户的点赞数、关注者数和公开列表数的对数与新冠疫苗接种意愿存在显著的直接关联。推文的情感得分与接种意愿的关系最强,而用户的关注者数量与新冠疫苗接种意愿的关系最弱。

解读

研究结果通过测试自我报告的新冠疫苗接种意愿与情感得分、推文的点赞数和转发数的对数以及用户的点赞数、关注者数和公开列表数之间的关联,初步验证了SoMeIL概念框架的几个组成部分。本研究还证明了在SEM研究中使用推特数据的可行性。重要的是,本研究初步验证了在SoMeIL框架中使用这六个组成部分作为在线反应行为,以推断加拿大两个城市推特用户自我报告的新冠疫苗接种意愿。

资金支持

本研究得到了2023 - 24年度安大略省研究生奖学金的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8031/10955635/49946d6e44be/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验