Department of Health Sciences, University of York, York, United Kingdom.
School of Communication and Journalism, University of Southern California, Los Angeles, CA, United States.
J Med Internet Res. 2022 Apr 29;24(4):e35788. doi: 10.2196/35788.
A growing amount of health research uses social media data. Those critical of social media research often cite that it may be unrepresentative of the population; however, the suitability of social media data in digital epidemiology is more nuanced. Identifying the demographics of social media users can help establish representativeness.
This study aims to identify the different approaches or combination of approaches to extract race or ethnicity from social media and report on the challenges of using these methods.
We present a scoping review to identify methods used to extract the race or ethnicity of Twitter users from Twitter data sets. We searched 17 electronic databases from the date of inception to May 15, 2021, and carried out reference checking and hand searching to identify relevant studies. Sifting of each record was performed independently by at least two researchers, with any disagreement discussed. Studies were required to extract the race or ethnicity of Twitter users using either manual or computational methods or a combination of both.
Of the 1249 records sifted, we identified 67 (5.36%) that met our inclusion criteria. Most studies (51/67, 76%) have focused on US-based users and English language tweets (52/67, 78%). A range of data was used, including Twitter profile metadata, such as names, pictures, information from bios (including self-declarations), or location or content of the tweets. A range of methodologies was used, including manual inference, linkage to census data, commercial software, language or dialect recognition, or machine learning or natural language processing. However, not all studies have evaluated these methods. Those that evaluated these methods found accuracy to vary from 45% to 93% with significantly lower accuracy in identifying categories of people of color. The inference of race or ethnicity raises important ethical questions, which can be exacerbated by the data and methods used. The comparative accuracies of the different methods are also largely unknown.
There is no standard accepted approach or current guidelines for extracting or inferring the race or ethnicity of Twitter users. Social media researchers must carefully interpret race or ethnicity and not overpromise what can be achieved, as even manual screening is a subjective, imperfect method. Future research should establish the accuracy of methods to inform evidence-based best practice guidelines for social media researchers and be guided by concerns of equity and social justice.
越来越多的健康研究使用社交媒体数据。那些对社交媒体研究持批评态度的人经常指出,它可能不能代表整个人群;然而,社交媒体数据在数字流行病学中的适用性更为复杂。确定社交媒体用户的人口统计学特征有助于确定代表性。
本研究旨在确定从社交媒体中提取种族或民族的不同方法或方法组合,并报告使用这些方法的挑战。
我们进行了范围界定综述,以确定从 Twitter 数据集中提取 Twitter 用户种族或民族的方法。我们从成立之日起至 2021 年 5 月 15 日搜索了 17 个电子数据库,并进行了参考文献检查和手工搜索以确定相关研究。至少由两名研究人员独立筛选每个记录,如果有任何分歧,则进行讨论。研究需要使用手动或计算方法或两者的组合来提取 Twitter 用户的种族或民族。
在筛选的 1249 条记录中,我们确定了符合纳入标准的 67 条(5.36%)。大多数研究(51/67,76%)都集中在美国用户和英语推文上(52/67,78%)。使用了各种数据,包括 Twitter 个人资料元数据,例如姓名、图片、个人资料中的信息(包括自我声明)、位置或推文的内容。使用了各种方法,包括手动推理、与人口普查数据的链接、商业软件、语言或方言识别或机器学习或自然语言处理。然而,并非所有研究都评估了这些方法。那些评估这些方法的研究发现,准确性从 45%到 93%不等,识别有色人种类别的准确性明显较低。种族或民族的推断引发了重要的伦理问题,这些问题可能会因数据和方法的使用而加剧。不同方法的比较准确性在很大程度上也是未知的。
目前没有标准的方法或当前的指南可以提取或推断 Twitter 用户的种族或民族。社交媒体研究人员必须仔细解释种族或民族,不要过度承诺可以实现的目标,因为即使是手动筛选也是一种主观的、不完美的方法。未来的研究应该确定方法的准确性,为社交媒体研究人员提供循证最佳实践指南,并以公平和社会正义为指导。