School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China.
Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, P. R. China.
Adv Mater. 2024 May;36(21):e2311803. doi: 10.1002/adma.202311803. Epub 2024 Apr 2.
Neuroinflammation has emerged as a major concern in ischemic stroke therapy because it exacebates neurological dysfunction and suppresses neurological recovery after ischemia/reperfusion. Fingolimod hydrochloride (FTY720) is an FDA-approved anti-inflammatory drug which exhibits potential neuroprotective effects in ischemic brain parenchyma. However, delivering a sufficient amount of FTY720 through the blood-brain barrier into brain lesions without inducing severe cardiovascular side effects remains challenging. Here, a neutrophil membrane-camouflaged polyprodrug nanomedicine that can migrate into ischemic brain tissues and in situ release FTY720 in response to elevated levels of reactive oxygen species. This nanomedicine delivers 15.2-fold more FTY720 into the ischemic brain and significantly reduces the risk of cardiotoxicity and infection compared with intravenously administered free drug. In addition, single-cell RNA-sequencing analysis identifies that the nanomedicine attenuates poststroke inflammation by reprogramming microglia toward anti-inflammatory phenotypes, which is realized via modulating Cebpb-regulated activation of NLRP3 inflammasomes and secretion of CXCL2 chemokine. This study offers new insights into the design and fabrication of polyprodrug nanomedicines for effective suppression of inflammation in ischemic stroke therapy.
神经炎症已成为缺血性中风治疗的一个主要关注点,因为它会加剧神经功能障碍,并抑制缺血/再灌注后的神经恢复。盐酸芬戈莫德 (FTY720) 是一种经美国食品和药物管理局批准的抗炎药物,它在缺血性脑实质中表现出潜在的神经保护作用。然而,通过血脑屏障将足够量的 FTY720 递送到脑损伤部位而不引起严重的心血管副作用仍然具有挑战性。在这里,一种中性粒细胞膜伪装的多前药纳米药物,能够迁移到缺血性脑组织中,并在活性氧水平升高时原位释放 FTY720。与静脉内给予游离药物相比,这种纳米药物将 15.2 倍更多的 FTY720 递送到缺血性大脑中,并显著降低了心脏毒性和感染的风险。此外,单细胞 RNA 测序分析表明,纳米药物通过重编程小胶质细胞向抗炎表型来减轻中风后的炎症,这是通过调节 Cebpb 调节的 NLRP3 炎性小体激活和 CXCL2 趋化因子的分泌来实现的。本研究为设计和制备多前药纳米药物以有效抑制缺血性中风治疗中的炎症提供了新的见解。