Jia Xinyu, Zhai Chonghao, Zhu Xuezhi, You Chang, Cao Yunyun, Zhang Xuguang, Zheng Yun, Fu Zhaorong, Mao Jun, Dai Tianxiang, Chang Lin, Su Xiaolong, Gong Qihuang, Wang Jianwei
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
Beijing Academy of Quantum Information Sciences, Beijing, China.
Nature. 2025 Mar;639(8054):329-336. doi: 10.1038/s41586-025-08602-1. Epub 2025 Feb 19.
The generation of large-scale entangled states is crucial for quantum technologies, such as quantum computation, communication and metrology. Integrated quantum photonics that enables on-chip encoding, processing and detection of quantum light states offers a promising platform for the generation and manipulation of large-scale entangled states. Generating entanglement between qubits encoded in discrete variables within single photons is challenging, owing to the difficulty of making single photons interact on photonic chips. Devices that operate with continuous variables are more promising, as they enable the deterministic generation and entanglement of qumodes, in which information is encoded in light quadratures. Demonstrations so far have been limited to entanglement between two qumodes. Here we report the deterministic generation of a continuous-variable eight-mode entanglement on an integrated optical chip. The chip delivers a quantum microcomb that produces multimode squeezed-vacuum optical frequency combs below the threshold. We verify the inseparability of our eight-mode state and demonstrate supermode multipartite entanglement over hundreds of megahertz sideband frequencies through violation of the van Loock-Furusawa criteria. By measuring the full matrices of nullifier correlations with sufficiently low off-diagonal noises, we characterize multipartite entanglement structures, which are approximate to the expected cluster-type structures for finite squeezing. This work shows the potential of continuous-variable integrated photonic quantum devices for facilitating quantum computing, networking and sensing.
大规模纠缠态的产生对于量子技术至关重要,如量子计算、通信和计量学。集成量子光子学能够在芯片上对量子光态进行编码、处理和检测,为大规模纠缠态的产生和操控提供了一个很有前景的平台。由于单光子在光子芯片上相互作用存在困难,在单光子内离散变量编码的量子比特之间产生纠缠具有挑战性。使用连续变量运行的设备更具前景,因为它们能够实现量子模式的确定性产生和纠缠,其中信息是在光正交分量中编码的。到目前为止的演示仅限于两个量子模式之间的纠缠。在此,我们报告在集成光学芯片上确定性地产生连续变量八模式纠缠。该芯片产生一个量子微梳,其在阈值以下产生多模压缩真空光频梳。我们验证了我们八模式态的不可分离性,并通过违反范洛克 - 古泽瓦标准,在数百兆赫兹边带频率上展示了超模式多体纠缠。通过测量具有足够低非对角噪声的零化子关联的完整矩阵,我们表征了多体纠缠结构,其对于有限压缩近似于预期的簇型结构。这项工作展示了连续变量集成光子量子器件在促进量子计算、网络和传感方面的潜力。