Lanigan-Atkins T, Yang S, Niedziela J L, Bansal D, May A F, Puretzky A A, Lin J Y Y, Pajerowski D M, Hong T, Chi S, Ehlers G, Delaire O
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Nat Commun. 2020 Sep 4;11(1):4430. doi: 10.1038/s41467-020-18121-4.
The lattice dynamics and high-temperature structural transition in SnS and SnSe are investigated via inelastic neutron scattering, high-resolution Raman spectroscopy and anharmonic first-principles simulations. We uncover a spectacular, extreme softening and reconstruction of an entire manifold of low-energy acoustic and optic branches across a structural transition, reflecting strong directionality in bonding strength and anharmonicity. Further, our results solve a prior controversy by revealing the soft-mode mechanism of the phase transition that impacts thermal transport and thermoelectric efficiency. Our simulations of anharmonic phonon renormalization go beyond low-order perturbation theory and capture these striking effects, showing that the large phonon shifts directly affect the thermal conductivity by altering both the phonon scattering phase space and the group velocities. These results provide a detailed microscopic understanding of phase stability and thermal transport in technologically important materials, providing further insights on ways to control phonon propagation in thermoelectrics, photovoltaics, and other materials requiring thermal management.
通过非弹性中子散射、高分辨率拉曼光谱和非谐第一性原理模拟,研究了硫化锡(SnS)和硒化锡(SnSe)的晶格动力学和高温结构转变。我们发现,在结构转变过程中,整个低能声学和光学分支流形出现了惊人的、极端的软化和重构,这反映了键合强度和非谐性中的强方向性。此外,我们的结果揭示了影响热传输和热电效率的相变软模机制,解决了之前的一个争议。我们对非谐声子重整化的模拟超越了低阶微扰理论,捕捉到了这些显著效应,表明大的声子频移通过改变声子散射相空间和群速度,直接影响热导率。这些结果为技术上重要的材料中的相稳定性和热传输提供了详细的微观理解,为控制热电、光伏和其他需要热管理的材料中的声子传播提供了进一步的见解。