Suppr超能文献

亚价合金化和空位工程助力实现最先进的立方相锗硒热电材料。

Metavalent alloying and vacancy engineering enable state-of-the-art cubic GeSe thermoelectrics.

作者信息

Luo Haoran, Shi Xiao-Lei, Liu Yongqiang, Li Meng, Zhang Min, Luo Xiaohuan, Wang Moran, Huang Xiaopei, Hu Lipeng, Chen Zhi-Gang

机构信息

College of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, Shenzhen University, Shenzhen, 518060, China.

School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.

出版信息

Nat Commun. 2025 Apr 1;16(1):3136. doi: 10.1038/s41467-025-58387-0.

Abstract

Conventional alloying strategies often require high alloying concentrations, leading to impurity phases and additional phase transition that limit the figure of merit of thermoelectric materials. Here, we introduce metavalent alloying and vacancy engineering as transformative strategies to facilitate the orthorhombic-to-cubic phase transition, in which we stabilize pure cubic GeSe under ambient conditions with just 10% alloying concentration using SbTe as an effective alloying agent. Compared to the covalently bonded orthorhombic phase, the metavalently bonded cubic GeSe features lower cation vacancy formation energy, reduced bandgap, enhanced band degeneracy, weaker chemical bonding, stronger lattice anharmonicity, and multiple phonon scattering centers. These properties synergistically improve the power factor and suppress the lattice thermal conductivity. Subsequent trace Pb doping further reduces the lattice thermal conductivity, achieving an unprecedented ZT of 1.38 at 723 K in cubic (GePbSe)(SbTe), along with a remarkable energy conversion efficiency of 6.13% under a 430 K temperature difference. These results advance the practical application of GeSe-based alloys for medium-temperature power generation and provide critical insights into the orthorhombic-to-cubic phase transition mechanism in chalcogenides.

摘要

传统的合金化策略通常需要高合金化浓度,这会导致杂质相和额外的相变,从而限制了热电材料的品质因数。在此,我们引入变价合金化和空位工程作为变革性策略,以促进正交相到立方相的转变,其中我们使用SbTe作为有效的合金化剂,在环境条件下仅用10%的合金化浓度就稳定了纯立方相GeSe。与共价键合的正交相相比,变价键合的立方相GeSe具有更低的阳离子空位形成能、减小的带隙、增强的能带简并性、较弱的化学键、更强的晶格非谐性以及多个声子散射中心。这些特性协同提高了功率因子并抑制了晶格热导率。随后的微量Pb掺杂进一步降低了晶格热导率,在立方相(GePbSe)(SbTe)中于723 K时实现了前所未有的1.38的ZT值,以及在430 K温差下6.13%的显著能量转换效率。这些结果推动了基于GeSe的合金在中温发电方面的实际应用,并为硫族化物中正交相到立方相的转变机制提供了关键见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e50e/11961766/d907a8ef4887/41467_2025_58387_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验