Suppr超能文献

通过互信息最大化进行超图中的社区检测。

Community detection in hypergraphs via mutual information maximization.

作者信息

Kritschgau Jürgen, Kaiser Daniel, Alvarado Rodriguez Oliver, Amburg Ilya, Bolkema Jessalyn, Grubb Thomas, Lan Fangfei, Maleki Sepideh, Chodrow Phil, Kay Bill

机构信息

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.

Department of Informatics, Indiana University, Bloomington, IN, 47408, USA.

出版信息

Sci Rep. 2024 Mar 23;14(1):6933. doi: 10.1038/s41598-024-55934-5.

Abstract

The hypergraph community detection problem seeks to identify groups of related vertices in hypergraph data. We propose an information-theoretic hypergraph community detection algorithm which compresses the observed data in terms of community labels and community-edge intersections. This algorithm can also be viewed as maximum-likelihood inference in a degree-corrected microcanonical stochastic blockmodel. We perform the compression/inference step via simulated annealing. Unlike several recent algorithms based on canonical models, our microcanonical algorithm does not require inference of statistical parameters such as vertex degrees or pairwise group connection rates. Through synthetic experiments, we find that our algorithm succeeds down to recently-conjectured thresholds for sparse random hypergraphs. We also find competitive performance in cluster recovery tasks on several hypergraph data sets.

摘要

超图社区检测问题旨在识别超图数据中相关顶点的组。我们提出了一种信息论超图社区检测算法,该算法根据社区标签和社区边交集对观测数据进行压缩。此算法也可视为度校正微正则随机块模型中的最大似然推断。我们通过模拟退火执行压缩/推断步骤。与最近基于正则模型的几种算法不同,我们的微正则算法不需要推断诸如顶点度或成对组连接率等统计参数。通过合成实验,我们发现我们的算法在稀疏随机超图上能成功达到最近推测的阈值。我们还在几个超图数据集的聚类恢复任务中发现了具有竞争力的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f5/10960844/a035e114da72/41598_2024_55934_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验