用于糖尿病性黄斑水肿分类的自监督类别选择性注意力分类器网络
Self-supervised category selective attention classifier network for diabetic macular edema classification.
作者信息
Chavan Sachin, Choubey Nitin
机构信息
SVKM'S NMIMS, Mukesh Patel School of Technology Management and Engineering, Shirpur, Maharashtra, India.
出版信息
Acta Diabetol. 2024 Jul;61(7):879-896. doi: 10.1007/s00592-024-02257-6. Epub 2024 Mar 23.
AIMS
This study aims to develop an advanced model for the classification of Diabetic Macular Edema (DME) using deep learning techniques. Specifically, the objective is to introduce a novel architecture, SSCSAC-Net, that leverages self-supervised learning and category-selective attention mechanisms to improve the precision of DME classification.
METHODS
The proposed SSCSAC-Net integrates self-supervised learning to effectively utilize unlabeled data for learning robust features related to DME. Additionally, it incorporates a category-specific attention mechanism and a domain-specific layer into the ResNet-152 base architecture. The model is trained using an ensemble of unsupervised and supervised learning techniques. Benchmark datasets are utilized for testing the model's performance, ensuring its robustness and generalizability across different data distributions.
RESULTS
Evaluation of the SSCSAC-Net on multiple datasets demonstrates its superior performance compared to existing techniques. The model achieves high accuracy, precision, and recall rates, with an accuracy of 98.7%, precision of 98.6%, and recall of 98.8%. Furthermore, the incorporation of self-supervised learning reduces the dependency on extensive labeled data, making the solution more scalable and cost-effective.
CONCLUSIONS
The proposed SSCSAC-Net represents a significant advancement in automated DME classification. By effectively using self-supervised learning and attention mechanisms, the model offers improved accuracy in identifying DME-related features within retinal images. Its robustness and generalizability across different datasets highlight its potential for clinical applications, providing a valuable tool for clinicians in diagnosing DME effectively.
目的
本研究旨在利用深度学习技术开发一种用于糖尿病性黄斑水肿(DME)分类的先进模型。具体而言,目标是引入一种新颖的架构SSCSAC-Net,该架构利用自监督学习和类别选择性注意力机制来提高DME分类的精度。
方法
所提出的SSCSAC-Net集成了自监督学习,以有效利用未标记数据来学习与DME相关的鲁棒特征。此外,它在ResNet-152基础架构中融入了特定类别的注意力机制和特定领域层。该模型使用无监督和监督学习技术的组合进行训练。使用基准数据集来测试模型的性能,确保其在不同数据分布上的鲁棒性和通用性。
结果
在多个数据集上对SSCSAC-Net的评估表明,与现有技术相比,它具有卓越的性能。该模型实现了高准确率、精确率和召回率,准确率为98.7%,精确率为98.6%,召回率为98.8%。此外,自监督学习的融入减少了对大量标记数据的依赖,使解决方案更具可扩展性和成本效益。
结论
所提出的SSCSAC-Net代表了自动DME分类方面的重大进展。通过有效使用自监督学习和注意力机制,该模型在识别视网膜图像中与DME相关的特征方面提供了更高的准确性。其在不同数据集上的鲁棒性和通用性突出了其临床应用潜力,为临床医生有效诊断DME提供了一个有价值的工具。