Bezmialem Vakif University Faculty of Medicine, Department of Ophthalmology, İstanbul, Türkiye.
Turk J Ophthalmol. 2023 Oct 19;53(5):301-306. doi: 10.4274/tjo.galenos.2023.92635.
To evaluate the effectiveness of the Lobe application, a machine learning (ML) tool that can be used on a personal computer without requiring coding expertise, in the recognition and classification of diabetic macular edema (DME) in spectral-domain optical coherence tomography (SD-OCT) scans.
A total of 695 cross-sectional SD-OCT images from 336 patients with DME and 200 OCT images of 200 healthy controls were included. Images with DME were classified into three main types: diffuse retinal edema (DRE), cystoid macular edema (CME), and cystoid macular degeneration (CMD). To develop the ML model, we used the desktop-based code-free Lobe application, which includes a pre-trained ResNet-50 V2 convolutional neural network and is available free of charge. The performance of the trained model in recognizing and classifying DME was evaluated with 41 DRE, 28 CMD, 70 CME, and 40 normal SD-OCT images that were not used in the training.
The developed model showed 99.28% sensitivity and 100% specificity for class-independent detection of DME. Sensitivity and specificity by labels were 87.80% and 98.57% for DRE, 96.43% and 99.29% for CME, and 95.71% and 95.41% for CMD, respectively.
To our knowledge, this is the first evaluation of the effectiveness of Lobe with ophthalmological images, and the results indicate that it can be used with high efficiency in the recognition and classification of DME from SD-OCT images by ophthalmologists without coding expertise.
评估 Lobe 应用程序在识别和分类频域光相干断层扫描(SD-OCT)图像中的糖尿病性黄斑水肿(DME)方面的有效性,该应用程序是一种机器学习(ML)工具,无需编码专业知识即可在个人计算机上使用。
共纳入 336 例 DME 患者的 695 张横断面 SD-OCT 图像和 200 例健康对照者的 200 张 OCT 图像。将具有 DME 的图像分为三种主要类型:弥漫性视网膜水肿(DRE)、囊样黄斑水肿(CME)和囊样黄斑变性(CMD)。为了开发 ML 模型,我们使用了基于桌面的无代码 Lobe 应用程序,该应用程序包含一个预训练的 ResNet-50 V2 卷积神经网络,并且是免费提供的。使用未用于训练的 41 张 DRE、28 张 CMD、70 张 CME 和 40 张正常 SD-OCT 图像来评估训练后的模型在识别和分类 DME 方面的性能。
所开发的模型在独立于标签的 DME 检测方面表现出 99.28%的敏感性和 100%的特异性。按标签的敏感性和特异性分别为 DRE 87.80%和 98.57%、CME 96.43%和 99.29%、CMD 95.71%和 95.41%。
据我们所知,这是首次对 Lobe 应用于眼科图像的效果进行评估,结果表明,它可以由没有编码专业知识的眼科医生高效地用于识别和分类 SD-OCT 图像中的 DME。