Suppr超能文献

人脑白质中过滤式扩散交换成像(FEXI)的各向异性:FEXI 中发生了什么?

Compartmental anisotropy of filtered exchange imaging (FEXI) in human white matter: What is happening in FEXI?

机构信息

F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.

Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

Magn Reson Med. 2024 Aug;92(2):660-675. doi: 10.1002/mrm.30086. Epub 2024 Mar 25.

Abstract

PURPOSE

To investigate the effects of compartmental anisotropy on filtered exchange imaging (FEXI) in white matter (WM).

THEORY AND METHODS

FEXI signals were measured using multiple combinations of diffusion filter and detection directions in five healthy volunteers. Additional filters, including a trace-weighted diffusion filter with trapezoidal gradients, a spherical b-tensor encoded diffusion filter, and a T2 filter, were tested with trace-weighted diffusion detection.

RESULTS

A large range of apparent exchange rates (AXR) and both positive and negative filter efficiencies (σ) were found depending on the mutual orientation of the filter and detection gradients relative to WM fiber orientation. The data demonstrated that the fast-diffusion compartment suppressed by diffusional filtering is not exclusively extra-cellular, but also intra-cellular. While not comprehensive, a simple two-compartment diffusion tensor model with water exchange was able to account qualitatively for the trends in positive and negative filtering efficiencies, while standard model imaging (SMI) without exchange could not. This two-compartment diffusion tensor model also demonstrated smaller AXR variances across subjects. When employing trace-weighted diffusion detection, AXR values were on the order of the R (=1/T1) of water at 3T for crossing fibers, while being less than R for parallel fibers.

CONCLUSION

Orientation-dependent AXR and σ values were observed when using multi-orientation filter and detection gradients in FEXI, indicating that WM FEXI models need to account for compartmental anisotropy. When using trace-weighted detection, AXR values were on the order of or less than R, complicating the interpretation of FEXI results in WM in terms of biological exchange properties. These findings may contribute toward better understanding of FEXI results in WM.

摘要

目的

研究各向异性隔室效应对弥散过滤交换成像(FEXI)在白质(WM)中的影响。

理论和方法

在 5 名健康志愿者中,使用多种扩散滤波器和检测方向组合测量 FEXI 信号。使用轨迹加权扩散检测测试了其他滤波器,包括具有梯形梯度的轨迹加权扩散滤波器、球形 b 张量编码扩散滤波器和 T2 滤波器。

结果

发现取决于滤波器和检测梯度相对于 WM 纤维方向的相互取向,存在很大范围的表观交换率(AXR)和正、负滤波器效率(σ)。数据表明,弥散过滤抑制的快扩散隔室不仅是细胞外的,也是细胞内的。虽然不全面,但具有水交换的简单双隔室扩散张量模型能够定性地解释正、负过滤效率的趋势,而没有交换的标准模型成像(SMI)则不能。这种双隔室扩散张量模型还证明了跨受试者 AXR 方差更小。当采用轨迹加权扩散检测时,对于交叉纤维,AXR 值约为 3T 下水的 R(=1/T1),而对于平行纤维,AXR 值小于 R。

结论

在 FEXI 中使用多方向滤波器和检测梯度时观察到与方向相关的 AXR 和 σ 值,这表明 WM FEXI 模型需要考虑隔室各向异性。当使用轨迹加权检测时,AXR 值约为或小于 R,这使得从生物交换特性的角度解释 WM 中的 FEXI 结果变得复杂。这些发现可能有助于更好地理解 WM 中的 FEXI 结果。

相似文献

1
Compartmental anisotropy of filtered exchange imaging (FEXI) in human white matter: What is happening in FEXI?
Magn Reson Med. 2024 Aug;92(2):660-675. doi: 10.1002/mrm.30086. Epub 2024 Mar 25.
2
The direction-dependence of apparent water exchange rate in human white matter.
Neuroimage. 2022 Feb 15;247:118831. doi: 10.1016/j.neuroimage.2021.118831. Epub 2021 Dec 17.
7
In vivo cortical microstructure mapping using high-gradient diffusion MRI accounting for intercompartmental water exchange effects.
Neuroimage. 2025 Jul 1;314:121258. doi: 10.1016/j.neuroimage.2025.121258. Epub 2025 May 9.

引用本文的文献

1
Mean Kärger Model Water Exchange Rate in Brain.
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00335. Epub 2024 Oct 25.

本文引用的文献

2
What does FEXI measure?
NMR Biomed. 2022 Dec;35(12):e4804. doi: 10.1002/nbm.4804. Epub 2022 Sep 8.
3
Neurite Exchange Imaging (NEXI): A minimal model of diffusion in gray matter with inter-compartment water exchange.
Neuroimage. 2022 Aug 1;256:119277. doi: 10.1016/j.neuroimage.2022.119277. Epub 2022 May 3.
4
The direction-dependence of apparent water exchange rate in human white matter.
Neuroimage. 2022 Feb 15;247:118831. doi: 10.1016/j.neuroimage.2021.118831. Epub 2021 Dec 17.
5
Time dependence in diffusion MRI predicts tissue outcome in ischemic stroke patients.
Magn Reson Med. 2021 Aug;86(2):754-764. doi: 10.1002/mrm.28743. Epub 2021 Mar 23.
6
Apparent exchange rate imaging: On its applicability and the connection to the real exchange rate.
Magn Reson Med. 2021 Aug;86(2):677-692. doi: 10.1002/mrm.28714. Epub 2021 Mar 10.
7
Feasibility of filter-exchange imaging (FEXI) in measuring different exchange processes in human brain.
Neuroimage. 2020 Oct 1;219:117039. doi: 10.1016/j.neuroimage.2020.117039. Epub 2020 Jun 10.
9
Constant gradient FEXSY: A time-efficient method for measuring exchange.
J Magn Reson. 2020 Feb;311:106667. doi: 10.1016/j.jmr.2019.106667. Epub 2019 Dec 16.
10
MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation.
Neuroimage. 2019 Nov 15;202:116137. doi: 10.1016/j.neuroimage.2019.116137. Epub 2019 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验