Suppr超能文献

单层半导体中电子的维格纳晶体特征。

Signatures of Wigner crystal of electrons in a monolayer semiconductor.

机构信息

Institute for Quantum Electronics, ETH Zürich, Zürich, Switzerland.

Department of Physics, Harvard University, Cambridge, MA, USA.

出版信息

Nature. 2021 Jul;595(7865):53-57. doi: 10.1038/s41586-021-03590-4. Epub 2021 Jun 30.

Abstract

When the Coulomb repulsion between electrons dominates over their kinetic energy, electrons in two-dimensional systems are predicted to spontaneously break continuous-translation symmetry and form a quantum crystal. Efforts to observe this elusive state of matter, termed a Wigner crystal, in two-dimensional extended systems have primarily focused on conductivity measurements on electrons confined to a single Landau level at high magnetic fields. Here we use optical spectroscopy to demonstrate that electrons in a monolayer semiconductor with density lower than 3 × 10 per centimetre squared form a Wigner crystal. The combination of a high electron effective mass and reduced dielectric screening enables us to observe electronic charge order even in the absence of a moiré potential or an external magnetic field. The interactions between a resonantly injected exciton and electrons arranged in a periodic lattice modify the exciton bandstructure so that an umklapp resonance arises in the optical reflection spectrum, heralding the presence of charge order. Our findings demonstrate that charge-tunable transition metal dichalcogenide monolayers enable the investigation of previously uncharted territory for many-body physics where interaction energy dominates over kinetic energy.

摘要

当电子之间的库仑斥力超过其动能时,二维系统中的电子预计会自发地打破连续平移对称性,形成量子晶体。为了在二维扩展系统中观察到这种难以捉摸的物质状态,即威格纳晶体,人们主要集中在对高磁场下限制在单个朗道能级中的电子的电导率测量上。在这里,我们使用光学光谱学证明,在密度低于每平方厘米 3%的单层半导体中,电子形成了威格纳晶体。高电子有效质量和降低的介电屏蔽的结合使我们即使在没有莫尔势或外加磁场的情况下也能观察到电子电荷有序。共振注入激子与周期性晶格中排列的电子之间的相互作用改变了激子能带结构,因此在光学反射光谱中出现了 umklapp 共振,预示着电荷有序的存在。我们的发现表明,可调电荷的过渡金属二卤化物单层使得能够研究以前在多体物理中没有探索过的领域,其中相互作用能超过动能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验