Suppr超能文献

一种用于同时预测细胞培养过程动态和产品质量的创新混合建模方法。

An innovative hybrid modeling approach for simultaneous prediction of cell culture process dynamics and product quality.

机构信息

DataHow AG, Zurich, Switzerland.

Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA.

出版信息

Biotechnol J. 2024 Mar;19(3):e2300473. doi: 10.1002/biot.202300473.

Abstract

The use of hybrid models is extensively described in the literature to predict the process evolution in cell cultures. These models combine mechanistic and machine learning methods, allowing the prediction of complex process behavior, in the presence of many process variables, without the need to collect a large amount of data. Hybrid models cannot be directly used to predict final product critical quality attributes, or CQAs, because they are usually measured only at the end of the process, and more mechanistic knowledge is needed for many classes of CQAs. The historical models can instead predict the CQAs better; however, they cannot directly relate manipulated process parameters to final CQAs, as they require knowledge of the process evolution. In this work, we propose an innovative modeling approach based on combining a hybrid propagation model with a historical data-driven model, that is, the combined hybrid model, for simultaneous prediction of full process dynamics and CQAs. The performance of the combined hybrid model was evaluated on an industrial dataset and compared to classical black-box models, which directly relate manipulated process parameters to CQAs. The proposed combined hybrid model outperforms the black-box model by 33% on average in predicting the CQAs while requiring only around half of the data for model training to match performance. Thus, in terms of model accuracy and experimental costs, the combined hybrid model in this study provides a promising platform for process optimization applications.

摘要

混合模型在文献中被广泛描述用于预测细胞培养过程的演变。这些模型结合了机理和机器学习方法,允许在存在许多过程变量的情况下预测复杂的过程行为,而无需收集大量数据。混合模型不能直接用于预测最终产品关键质量属性(CQAs),因为它们通常仅在过程结束时进行测量,并且对于许多 CQA 类别需要更多的机理知识。历史模型可以更好地预测 CQAs;但是,它们不能直接将操作的过程参数与最终 CQAs 相关联,因为它们需要了解过程的演变。在这项工作中,我们提出了一种基于组合混合传播模型和历史数据驱动模型的创新建模方法,即组合混合模型,用于同时预测整个过程动力学和 CQAs。在工业数据集上评估了组合混合模型的性能,并将其与直接将操作的过程参数与 CQAs 相关联的经典黑盒模型进行了比较。与黑盒模型相比,所提出的组合混合模型在预测 CQAs 方面平均提高了 33%,而模型训练所需的数据量仅为匹配性能的一半左右。因此,就模型准确性和实验成本而言,本研究中的组合混合模型为过程优化应用提供了一个有前途的平台。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验