Suppr超能文献

揭示复杂性:神经影像学领域中磁共振成像(MRI)对T2加权高信号评估的全面综述

Unveiling the Intricacies: A Comprehensive Review of Magnetic Resonance Imaging (MRI) Assessment of T2-Weighted Hyperintensities in the Neuroimaging Landscape.

作者信息

Dhabalia Rishabh, Kashikar Shivali V, Parihar Pratap S, Mishra Gaurav V

机构信息

Radiodiagnosis, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND.

出版信息

Cureus. 2024 Feb 24;16(2):e54808. doi: 10.7759/cureus.54808. eCollection 2024 Feb.

Abstract

T2-weighted hyperintensities in neuroimaging represent areas of heightened signal intensity on magnetic resonance imaging (MRI) scans, holding crucial importance in neuroimaging. This comprehensive review explores the T2-weighted hyperintensities, providing insights into their definition, characteristics, clinical relevance, and underlying causes. It highlights the significance of these hyperintensities as sensitive markers for neurological disorders, including multiple sclerosis, vascular dementia, and brain tumors. The review also delves into advanced neuroimaging techniques, such as susceptibility-weighted and diffusion tensor imaging, and the application of artificial intelligence and machine learning in hyperintensities analysis. Furthermore, it outlines the challenges and pitfalls associated with their assessment and emphasizes the importance of standardized protocols and a multidisciplinary approach. The review discusses future directions for research and clinical practice, including the development of biomarkers, personalized medicine, and enhanced imaging techniques. Ultimately, the review underscores the profound impact of T2-weighted hyperintensities in shaping the landscape of neurological diagnosis, prognosis, and treatment, contributing to a deeper understanding of complex neurological conditions and guiding more informed and effective patient care.

摘要

神经影像学中的T2加权高信号代表磁共振成像(MRI)扫描中信号强度增强的区域,在神经影像学中至关重要。这篇全面的综述探讨了T2加权高信号,深入剖析了其定义、特征、临床相关性及潜在病因。它强调了这些高信号作为神经系统疾病(包括多发性硬化症、血管性痴呆和脑肿瘤)敏感标志物的重要性。该综述还深入探讨了诸如磁敏感加权成像和扩散张量成像等先进的神经影像学技术,以及人工智能和机器学习在高信号分析中的应用。此外,它概述了与评估相关的挑战和陷阱,并强调了标准化方案和多学科方法的重要性。该综述讨论了研究和临床实践的未来方向,包括生物标志物的开发、个性化医疗和先进成像技术。最终,该综述强调了T2加权高信号在塑造神经诊断、预后和治疗格局方面的深远影响,有助于更深入地理解复杂的神经系统疾病,并指导更明智、有效的患者护理。

相似文献

引用本文的文献

本文引用的文献

5
Explainable Artificial Intelligence for Predictive Modeling in Healthcare.用于医疗保健预测建模的可解释人工智能
J Healthc Inform Res. 2022 Feb 11;6(2):228-239. doi: 10.1007/s41666-022-00114-1. eCollection 2022 Jun.
8
Intensity standardization methods in magnetic resonance imaging of head and neck cancer.头颈癌磁共振成像中的强度标准化方法
Phys Imaging Radiat Oncol. 2021 Nov 20;20:88-93. doi: 10.1016/j.phro.2021.11.001. eCollection 2021 Oct.
10
Artificial Intelligence and Cellular Segmentation in Tissue Microscopy Images.人工智能与组织切片图像中的细胞分割。
Am J Pathol. 2021 Oct;191(10):1693-1701. doi: 10.1016/j.ajpath.2021.05.022. Epub 2021 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验