Suppr超能文献

运用机器学习概念预测人工晶状体倾斜。

Predicting intraocular lens tilt using a machine learning concept.

机构信息

From the Kepler University Clinic Linz, Linz, Austria (Waser, Honeder, Hirnschall, Khalil, Pomberger, Laubichler, Mariacher, Bolz); Johannes Kepler University Linz, Linz, Austria (Waser, Honeder, Hirnschall, Khalil, Pomberger, Laubichler, Mariacher, Bolz).

出版信息

J Cataract Refract Surg. 2024 Aug 1;50(8):805-809. doi: 10.1097/j.jcrs.0000000000001452.

Abstract

PURPOSE

To use a combination of partial least squares regression and a machine learning approach to predict intraocular lens (IOL) tilt using preoperative biometry data.

SETTING

Kepler University Clinic Linz, Linz, Austria.

DESIGN

Prospective single-center study.

METHODS

Optical coherence tomography, autorefraction, and subjective refraction were performed at baseline and 8 weeks after cataract surgery. In analysis I, only 1 eye per patient was included and a tilt prediction model was generated. In analysis II, a pairwise comparison between right and left eyes was performed.

RESULTS

In analysis I, 50 eyes of 50 patients were analyzed. Difference in amount, orientation, and vector from preoperative to postoperative lens tilt was -0.13 degrees, 2.14 degrees, and 1.20 degrees, respectively. A high predictive power (variable importance for projection [VIP]) for postoperative tilt prediction was found for preoperative tilt (VIP = 2.2), pupil decentration (VIP = 1.5), lens thickness (VIP = 1.1), axial eye length (VIP = 0.9), and preoperative lens decentration (VIP = 0.8). These variables were applied to a machine learning algorithm resulting in an out of bag score of 0.92 degrees. In analysis II, 76 eyes of 38 patients were included. The difference of preoperative to postoperative IOL tilt of right and left eyes of the same individual was statistically relevant.

CONCLUSIONS

Postoperative IOL tilt showed excellent predictability using preoperative biometry data and a combination of partial least squares regression and a machine learning algorithm. Preoperative lens tilt, pupil decentration, lens thickness, axial eye length, and preoperative lens decentration were found to be the most relevant parameters for this prediction model.

摘要

目的

使用偏最小二乘回归和机器学习方法,结合术前生物测量数据预测人工晶状体(IOL)倾斜。

设置

奥地利林茨开普勒大学诊所。

设计

前瞻性单中心研究。

方法

白内障手术后基线和 8 周时进行光学相干断层扫描、自动折射和主观折射。在分析 I 中,每个患者仅纳入 1 只眼,并生成倾斜预测模型。在分析 II 中,对右眼和左眼进行了两两比较。

结果

在分析 I 中,对 50 例 50 只眼进行了分析。术前到术后晶状体倾斜量、方向和矢量的差异分别为-0.13 度、2.14 度和 1.20 度。术前倾斜(VIP=2.2)、瞳孔偏心(VIP=1.5)、晶状体厚度(VIP=1.1)、眼轴长度(VIP=0.9)和术前晶状体偏心(VIP=0.8)对术后倾斜预测具有较高的预测能力(投影变量重要性[VIP])。这些变量被应用于机器学习算法,得出的袋外评分(out of bag score)为 0.92 度。在分析 II 中,对 38 例 76 只眼进行了分析。同一患者右眼和左眼的术前到术后 IOL 倾斜差异具有统计学意义。

结论

使用术前生物测量数据和偏最小二乘回归与机器学习算法相结合,可很好地预测术后 IOL 倾斜。术前晶状体倾斜、瞳孔偏心、晶状体厚度、眼轴长度和术前晶状体偏心被认为是该预测模型最相关的参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验