From the Kepler University Clinic Linz, Linz, Austria (Waser, Honeder, Hirnschall, Khalil, Pomberger, Laubichler, Mariacher, Bolz); Johannes Kepler University Linz, Linz, Austria (Waser, Honeder, Hirnschall, Khalil, Pomberger, Laubichler, Mariacher, Bolz).
J Cataract Refract Surg. 2024 Aug 1;50(8):805-809. doi: 10.1097/j.jcrs.0000000000001452.
To use a combination of partial least squares regression and a machine learning approach to predict intraocular lens (IOL) tilt using preoperative biometry data.
Kepler University Clinic Linz, Linz, Austria.
Prospective single-center study.
Optical coherence tomography, autorefraction, and subjective refraction were performed at baseline and 8 weeks after cataract surgery. In analysis I, only 1 eye per patient was included and a tilt prediction model was generated. In analysis II, a pairwise comparison between right and left eyes was performed.
In analysis I, 50 eyes of 50 patients were analyzed. Difference in amount, orientation, and vector from preoperative to postoperative lens tilt was -0.13 degrees, 2.14 degrees, and 1.20 degrees, respectively. A high predictive power (variable importance for projection [VIP]) for postoperative tilt prediction was found for preoperative tilt (VIP = 2.2), pupil decentration (VIP = 1.5), lens thickness (VIP = 1.1), axial eye length (VIP = 0.9), and preoperative lens decentration (VIP = 0.8). These variables were applied to a machine learning algorithm resulting in an out of bag score of 0.92 degrees. In analysis II, 76 eyes of 38 patients were included. The difference of preoperative to postoperative IOL tilt of right and left eyes of the same individual was statistically relevant.
Postoperative IOL tilt showed excellent predictability using preoperative biometry data and a combination of partial least squares regression and a machine learning algorithm. Preoperative lens tilt, pupil decentration, lens thickness, axial eye length, and preoperative lens decentration were found to be the most relevant parameters for this prediction model.
使用偏最小二乘回归和机器学习方法,结合术前生物测量数据预测人工晶状体(IOL)倾斜。
奥地利林茨开普勒大学诊所。
前瞻性单中心研究。
白内障手术后基线和 8 周时进行光学相干断层扫描、自动折射和主观折射。在分析 I 中,每个患者仅纳入 1 只眼,并生成倾斜预测模型。在分析 II 中,对右眼和左眼进行了两两比较。
在分析 I 中,对 50 例 50 只眼进行了分析。术前到术后晶状体倾斜量、方向和矢量的差异分别为-0.13 度、2.14 度和 1.20 度。术前倾斜(VIP=2.2)、瞳孔偏心(VIP=1.5)、晶状体厚度(VIP=1.1)、眼轴长度(VIP=0.9)和术前晶状体偏心(VIP=0.8)对术后倾斜预测具有较高的预测能力(投影变量重要性[VIP])。这些变量被应用于机器学习算法,得出的袋外评分(out of bag score)为 0.92 度。在分析 II 中,对 38 例 76 只眼进行了分析。同一患者右眼和左眼的术前到术后 IOL 倾斜差异具有统计学意义。
使用术前生物测量数据和偏最小二乘回归与机器学习算法相结合,可很好地预测术后 IOL 倾斜。术前晶状体倾斜、瞳孔偏心、晶状体厚度、眼轴长度和术前晶状体偏心被认为是该预测模型最相关的参数。