Martinez-Enriquez Eduardo, Velarde-Rodríguez Gonzalo, Alejandre-Alba Nicolás, Ansah Derick, Kishore Sindhu, de la Peña Álvaro, Natarajan Ramya, Vaddavalli Pravin, Zhao Yue, Okudolo Joseph O, McBee Dylan B, Celik Ugur, Cetin Mujdat, Dong Jen-Li, Lim Yuli, Wang Li, Koch Douglas Donald, MacRae Scott, Marcos Susana
Instituto de Optica Daza de Valdes, Madrid, Comunidad de Madrid, Spain.
Ophthalmology Service, Fundación Jiménez Díaz University Hospital, Madrid, Spain.
Biomed Opt Express. 2025 Mar 13;16(4):1439-1456. doi: 10.1364/BOE.551733. eCollection 2025 Apr 1.
In cataract surgery, the opacified crystalline lens is replaced by an artificial intraocular lens (IOL), requiring precise preoperative selection of parameters to optimize postoperative visual quality. Three-dimensional customized eye models, which can be constructed using quantitative data from anterior segment optical coherence tomography, provide a robust platform for virtual surgery. These models enable simulations and predictions of the optical outcomes for specific patients and selected IOLs. A critical step in building these models is estimating the IOL's tilt and position preoperatively based on the available preoperative geometrical information (ocular parameters). In this study, we present a machine learning model that, for the first time, incorporates the full shape geometry of the crystalline lens as candidate input features to predict the postoperative IOL tilt. Furthermore, we identify the most relevant features for this prediction task. Our model demonstrates statistically significantly lower estimation errors compared to a simple linear correlation method, reducing the estimation error by approximately 6%. These findings highlight the potential of this approach to enhance the accuracy of postoperative predictions. Further work is needed to examine the potential for such postoperative predictions to improve visual outcomes in cataract patients.
在白内障手术中,浑浊的晶状体被人工晶状体(IOL)取代,这需要在术前精确选择参数以优化术后视觉质量。三维定制眼模型可利用前段光学相干断层扫描的定量数据构建,为虚拟手术提供了一个强大的平台。这些模型能够对特定患者和所选人工晶状体的光学结果进行模拟和预测。构建这些模型的关键步骤是根据术前可用的几何信息(眼部参数)术前估计人工晶状体的倾斜度和位置。在本研究中,我们首次提出了一种机器学习模型,该模型将晶状体的完整形状几何结构作为候选输入特征,以预测术后人工晶状体的倾斜度。此外,我们还确定了该预测任务中最相关的特征。与简单的线性相关方法相比,我们的模型在统计上显示出显著更低的估计误差,估计误差降低了约6%。这些发现突出了这种方法在提高术后预测准确性方面的潜力。需要进一步开展工作,以研究这种术后预测改善白内障患者视觉效果的可能性。