Suppr超能文献

HyperTMO:一种基于超图卷积网络的可信多组学整合框架,用于患者分类。

HyperTMO: a trusted multi-omics integration framework based on hypergraph convolutional network for patient classification.

机构信息

School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China.

Research Center for Medical Big Data, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100039, China.

出版信息

Bioinformatics. 2024 Mar 29;40(4). doi: 10.1093/bioinformatics/btae159.

Abstract

MOTIVATION

The rapid development of high-throughput biomedical technologies can provide researchers with detailed multi-omics data. The multi-omics integrated analysis approach based on machine learning contributes a more comprehensive perspective to human disease research. However, there are still significant challenges in representing single-omics data and integrating multi-omics information.

RESULTS

This article presents HyperTMO, a Trusted Multi-Omics integration framework based on Hypergraph convolutional network for patient classification. HyperTMO constructs hypergraph structures to represent the association between samples in single-omics data, then evidence extraction is performed by hypergraph convolutional network, and multi-omics information is integrated at an evidence level. Last, we experimentally demonstrate that HyperTMO outperforms other state-of-the-art methods in breast cancer subtype classification and Alzheimer's disease classification tasks using multi-omics data from TCGA (BRCA) and ROSMAP datasets. Importantly, HyperTMO is the first attempt to integrate hypergraph structure, evidence theory, and multi-omics integration for patient classification. Its accurate and robust properties bring great potential for applications in clinical diagnosis.

AVAILABILITY AND IMPLEMENTATION

HyperTMO and datasets are publicly available at https://github.com/ippousyuga/HyperTMO.

摘要

动机

高通量生物医学技术的快速发展可以为研究人员提供详细的多组学数据。基于机器学习的多组学综合分析方法为人类疾病研究提供了更全面的视角。然而,在表示单组学数据和整合多组学信息方面仍然存在重大挑战。

结果

本文提出了基于超图卷积网络的 HyperTMO,这是一种用于患者分类的可信多组学集成框架。HyperTMO 构建超图结构来表示单组学数据中样本之间的关联,然后通过超图卷积网络进行证据提取,并在证据水平上整合多组学信息。最后,我们使用 TCGA(BRCA)和 ROSMAP 数据集的多组学数据,在乳腺癌亚型分类和阿尔茨海默病分类任务中实验证明,HyperTMO 优于其他最先进的方法。重要的是,HyperTMO 是首次尝试将超图结构、证据理论和多组学集成用于患者分类。其准确和稳健的特性为临床诊断中的应用带来了巨大的潜力。

可用性和实施

HyperTMO 和数据集可在 https://github.com/ippousyuga/HyperTMO 上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04df/11212491/4e7da30c7d2e/btae159f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验