Suppr超能文献

基于深度学习的算法在多期 CT 中检测 HCC 高危患者的原发性肝恶性肿瘤。

Deep learning-based algorithm to detect primary hepatic malignancy in multiphase CT of patients at high risk for HCC.

机构信息

Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.

Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

出版信息

Eur Radiol. 2021 Sep;31(9):7047-7057. doi: 10.1007/s00330-021-07803-2. Epub 2021 Mar 18.

Abstract

OBJECTIVES

To develop and evaluate a deep learning-based model capable of detecting primary hepatic malignancies in multiphase CT images of patients at high risk for hepatocellular carcinoma (HCC).

METHODS

A total of 1350 multiphase CT scans of 1280 hepatic malignancies (1202 HCCs and 78 non-HCCs) in 1320 patients at high risk for HCC were retrospectively analyzed. Following the delineation of the focal hepatic lesions according to reference standards, the CT scans were categorized randomly into the training (568 scans), tuning (193 scans), and test (589 scans) sets. Multiphase CT information was subjected to multichannel integration, and livers were automatically segmented before model development. A deep learning-based model capable of detecting malignancies was developed using a mask region-based convolutional neural network. The thresholds of the prediction score and the intersection over union were determined on the tuning set corresponding to the highest sensitivity with < 5 false-positive cases per CT scan. The sensitivity and the number of false-positives of the proposed model on the test set were calculated. Potential causes of false-negatives and false-positives on the test set were analyzed.

RESULTS

This model exhibited a sensitivity of 84.8% with 4.80 false-positives per CT scan on the test set. The most frequent potential causes of false-negatives and false-positives were determined to be atypical enhancement patterns for HCC (71.7%) and registration/segmentation errors (42.7%), respectively.

CONCLUSIONS

The proposed deep learning-based model developed to automatically detect primary hepatic malignancies exhibited an 84.8% of sensitivity with 4.80 false-positives per CT scan in the test set.

KEY POINTS

• Image processing, including multichannel integration of multiphase CT and automatic liver segmentation, enabled the application of a deep learning-based model to detect primary hepatic malignancy. • Our model exhibited a sensitivity of 84.8% with a false-positive rate of 4.80 per CT scan.

摘要

目的

开发并评估一种基于深度学习的模型,以检测高风险肝细胞癌(HCC)患者多期 CT 图像中的原发性肝恶性肿瘤。

方法

回顾性分析了 1320 例高风险 HCC 患者的 1350 例多期 CT 扫描,共 1280 例肝恶性肿瘤(1202 例 HCC 和 78 例非 HCC)。根据参考标准对局灶性肝病变进行描绘后,将 CT 扫描随机分为训练集(568 例)、调谐集(193 例)和测试集(589 例)。对多期 CT 信息进行多通道整合,并在模型开发前自动进行肝脏分割。使用基于掩模区域的卷积神经网络开发了一种能够检测恶性肿瘤的深度学习模型。在调谐集上确定预测得分和交并比的阈值,以获得最高灵敏度,且每个 CT 扫描的假阳性病例数<5。计算测试集上建议模型的灵敏度和假阳性数。分析测试集上假阴性和假阳性的潜在原因。

结果

该模型在测试集上的灵敏度为 84.8%,每个 CT 扫描的假阳性数为 4.80。假阴性和假阳性最常见的潜在原因分别确定为 HCC 的非典型增强模式(71.7%)和配准/分割错误(42.7%)。

结论

为自动检测原发性肝恶性肿瘤而开发的基于深度学习的模型在测试集上的灵敏度为 84.8%,每个 CT 扫描的假阳性数为 4.80。

关键点

  • 图像处理,包括多期 CT 的多通道整合和自动肝脏分割,使基于深度学习的模型能够应用于检测原发性肝恶性肿瘤。

  • 我们的模型在测试集上的灵敏度为 84.8%,假阳性率为每 CT 扫描 4.80。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验