Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China.
School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China.
Curr Radiopharm. 2024;17(4):341-355. doi: 10.2174/0118744710282465240315053136.
Head and Neck Squamous Cell Carcinoma (HNSCC) is a malignant tumor with a high degree of malignancy, invasiveness, and metastasis rate. Radiotherapy, as an important adjuvant therapy for HNSCC, can reduce the postoperative recurrence rate and improve the survival rate. Identifying the genes related to HNSCC radiotherapy resistance (HNSCC-RR) is helpful in the search for potential therapeutic targets. However, identifying radiotherapy resistance-related genes from tens of thousands of genes is a challenging task. While interactions between genes are important for elucidating complex biological processes, the large number of genes makes the computation of gene interactions infeasible.
We propose a gene selection algorithm, RGIE, which is based on ReliefF, Gene Network Inference with Ensemble of Trees (GENIE3) and Feature Elimination. ReliefF was used to select a feature subset that is discriminative for HNSCC-RR, GENIE3 constructed a gene regulatory network based on this subset to analyze the regulatory relationship among genes, and feature elimination was used to remove redundant and noisy features.
Nine genes (SPAG1, FIGN, NUBPL, CHMP5, TCF7L2, COQ10B, BSDC1, ZFPM1, GRPEL1) were identified and used to identify HNSCC-RR, which achieved performances of 0.9730, 0.9679, 0.9767, and 0.9885 in terms of accuracy, precision, recall, and AUC, respectively. Finally, qRT-PCR validated the differential expression of the nine signature genes in cell lines (SCC9, SCC9-RR).
RGIE is effective in screening genes related to HNSCC-RR. This approach may help guide clinical treatment modalities for patients and develop potential treatments.
头颈部鳞状细胞癌(HNSCC)是一种恶性程度高、侵袭性强、转移率高的恶性肿瘤。放疗作为 HNSCC 的重要辅助治疗方法,可以降低术后复发率,提高生存率。鉴定与 HNSCC 放疗抵抗(HNSCC-RR)相关的基因有助于寻找潜在的治疗靶点。然而,从数以万计的基因中鉴定放疗抵抗相关基因是一项具有挑战性的任务。虽然基因之间的相互作用对于阐明复杂的生物过程很重要,但大量的基因使得计算基因相互作用变得不可行。
我们提出了一种基因选择算法 RGIE,该算法基于 ReliefF、基于树的基因网络推断与集成(GENIE3)和特征消除。ReliefF 用于选择对 HNSCC-RR 具有判别能力的特征子集,GENIE3 基于该子集构建基因调控网络,分析基因之间的调控关系,特征消除用于去除冗余和噪声特征。
鉴定出 9 个基因(SPAG1、FIGN、NUBPL、CHMP5、TCF7L2、COQ10B、BSDC1、ZFPM1、GRPEL1),用于识别 HNSCC-RR,其在准确性、精度、召回率和 AUC 方面的性能分别为 0.9730、0.9679、0.9767 和 0.9885。最后,qRT-PCR 验证了这 9 个特征基因在细胞系(SCC9、SCC9-RR)中的差异表达。
RGIE 有效地筛选了与 HNSCC-RR 相关的基因。这种方法可能有助于指导患者的临床治疗模式,并开发潜在的治疗方法。