Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
Institute for Genome Sciences, University of Maryland Medical Center, Baltimore, MD, USA.
Mol Cell. 2022 Jan 20;82(2):260-273. doi: 10.1016/j.molcel.2021.12.011. Epub 2022 Jan 10.
Biological systems are composed of a vast web of multiscale molecular interactors and interactions. High-throughput technologies, both bulk and single cell, now allow for investigation of the properties and quantities of these interactors. Computational algorithms and machine learning methods then provide the tools to derive meaningful insights from the resulting data sets. One such approach is graphical network modeling, which provides a computational framework to explicitly model the molecular interactions within and between the cells comprising biological systems. These graphical networks aim to describe a putative chain of cause and effect between interacting molecules. This feature allows for determination of key molecules in a biological process, accelerated generation of mechanistic hypotheses, and simulation of experimental outcomes. We review the computational concepts and applications of graphical network models across molecular scales for both intracellular and intercellular regulatory biology, examples of successful applications, and the future directions needed to overcome current limitations.
生物系统由一个庞大的多尺度分子相互作用器和相互作用网络组成。高通量技术(包括批量和单细胞技术)现在可以用于研究这些相互作用器的性质和数量。然后,计算算法和机器学习方法为从所得数据集得出有意义的见解提供了工具。一种这样的方法是图形网络建模,它提供了一个计算框架,可以明确地对构成生物系统的细胞内和细胞间的分子相互作用进行建模。这些图形网络旨在描述相互作用分子之间的因果关系链。这一特性允许确定生物过程中的关键分子,加速产生机制假设,并模拟实验结果。我们综述了用于细胞内和细胞间调控生物学的分子尺度上的图形网络模型的计算概念和应用,包括成功应用的实例,以及克服当前限制所需的未来方向。