Suppr超能文献

利用机器学习发现控制生物系统的调控网络。

The use of machine learning to discover regulatory networks controlling biological systems.

机构信息

Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Convergence Institute, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.

Institute for Genome Sciences, University of Maryland Medical Center, Baltimore, MD, USA.

出版信息

Mol Cell. 2022 Jan 20;82(2):260-273. doi: 10.1016/j.molcel.2021.12.011. Epub 2022 Jan 10.

Abstract

Biological systems are composed of a vast web of multiscale molecular interactors and interactions. High-throughput technologies, both bulk and single cell, now allow for investigation of the properties and quantities of these interactors. Computational algorithms and machine learning methods then provide the tools to derive meaningful insights from the resulting data sets. One such approach is graphical network modeling, which provides a computational framework to explicitly model the molecular interactions within and between the cells comprising biological systems. These graphical networks aim to describe a putative chain of cause and effect between interacting molecules. This feature allows for determination of key molecules in a biological process, accelerated generation of mechanistic hypotheses, and simulation of experimental outcomes. We review the computational concepts and applications of graphical network models across molecular scales for both intracellular and intercellular regulatory biology, examples of successful applications, and the future directions needed to overcome current limitations.

摘要

生物系统由一个庞大的多尺度分子相互作用器和相互作用网络组成。高通量技术(包括批量和单细胞技术)现在可以用于研究这些相互作用器的性质和数量。然后,计算算法和机器学习方法为从所得数据集得出有意义的见解提供了工具。一种这样的方法是图形网络建模,它提供了一个计算框架,可以明确地对构成生物系统的细胞内和细胞间的分子相互作用进行建模。这些图形网络旨在描述相互作用分子之间的因果关系链。这一特性允许确定生物过程中的关键分子,加速产生机制假设,并模拟实验结果。我们综述了用于细胞内和细胞间调控生物学的分子尺度上的图形网络模型的计算概念和应用,包括成功应用的实例,以及克服当前限制所需的未来方向。

相似文献

2
Introduction: Cancer Gene Networks.引言:癌症基因网络
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.
3
Systems Biology and Machine Learning in Plant-Pathogen Interactions.系统生物学与植物-病原体互作中的机器学习
Mol Plant Microbe Interact. 2019 Jan;32(1):45-55. doi: 10.1094/MPMI-08-18-0221-FI. Epub 2018 Nov 12.
7
..
J Biosci. 2022;47(2). doi: 10.1007/s12038-022-00253-y.
8
Multiview learning for understanding functional multiomics.多视图学习理解功能多组学。
PLoS Comput Biol. 2020 Apr 2;16(4):e1007677. doi: 10.1371/journal.pcbi.1007677. eCollection 2020 Apr.

引用本文的文献

2
Non-canonical plant metabolism.非经典植物代谢
Nat Plants. 2025 Apr;11(4):696-708. doi: 10.1038/s41477-025-01965-3. Epub 2025 Mar 31.
4
Ten challenges and opportunities in computational immuno-oncology.计算免疫肿瘤学的十大挑战与机遇。
J Immunother Cancer. 2024 Oct 26;12(10):e009721. doi: 10.1136/jitc-2024-009721.

本文引用的文献

2
Predicting genotype-specific gene regulatory networks.预测基因型特异性基因调控网络。
Genome Res. 2022 Mar;32(3):524-533. doi: 10.1101/gr.275107.120. Epub 2022 Feb 22.
7
Mapping the multiscale structure of biological systems.绘制生物系统的多尺度结构。
Cell Syst. 2021 Jun 16;12(6):622-635. doi: 10.1016/j.cels.2021.05.012.
9
DCI: learning causal differences between gene regulatory networks.DCI:学习基因调控网络之间的因果差异。
Bioinformatics. 2021 Sep 29;37(18):3067-3069. doi: 10.1093/bioinformatics/btab167.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验