School of Electronics Engineering and Computer Science, Peking University, 100871, Beijing, China.
Department of Biomedical Engineering, Duke University, 27708, Durham, United States.
Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab100.
Although chemotherapy is the first-line treatment for ovarian cancer (OCa) patients, chemoresistance (CR) decreases their progression-free survival. This paper investigates the genetic interaction (GI) related to OCa-CR. To decrease the complexity of establishing gene networks, individual signature genes related to OCa-CR are identified using a gradient boosting decision tree algorithm. Additionally, the genetic interaction coefficient (GIC) is proposed to measure the correlation of two signature genes quantitatively and explain their joint influence on OCa-CR. Gene pair that possesses high GIC is identified as signature pair. A total of 24 signature gene pairs are selected that include 10 individual signature genes and the influence of signature gene pairs on OCa-CR is explored. Finally, a signature gene pair-based prediction of OCa-CR is identified. The area under curve (AUC) is a widely used performance measure for machine learning prediction. The AUC of signature gene pair reaches 0.9658, whereas the AUC of individual signature gene-based prediction is 0.6823 only. The identified signature gene pairs not only build an efficient GI network of OCa-CR but also provide an interesting way for OCa-CR prediction. This improvement shows that our proposed method is a useful tool to investigate GI related to OCa-CR.
虽然化疗是卵巢癌 (OCa) 患者的一线治疗方法,但化疗耐药性 (CR) 降低了他们的无进展生存期。本文研究了与 OCa-CR 相关的遗传相互作用 (GI)。为了降低建立基因网络的复杂性,使用梯度提升决策树算法识别与 OCa-CR 相关的个体特征基因。此外,还提出了遗传相互作用系数 (GIC),以定量衡量两个特征基因的相关性,并解释它们对 OCa-CR 的共同影响。具有高 GIC 的基因对被确定为特征对。总共选择了 24 对特征基因,其中包括 10 个个体特征基因,并探讨了特征基因对 OCa-CR 的影响。最后,确定了基于特征基因对的 OCa-CR 预测。曲线下面积 (AUC) 是机器学习预测中广泛使用的性能度量。特征基因对的 AUC 达到 0.9658,而基于个体特征基因的预测的 AUC 仅为 0.6823。所鉴定的特征基因对不仅构建了 OCa-CR 的有效 GI 网络,而且为 OCa-CR 预测提供了一种有趣的方法。这种改进表明,我们提出的方法是研究与 OCa-CR 相关的 GI 的有用工具。