Benbelkacem Samir, Oulefki Adel, Agaian Sos, Zenati-Henda Nadia, Trongtirakul Thaweesak, Aouam Djamel, Masmoudi Mostefa, Zemmouri Mohamed
Robotics and Industrial Automation Division, Centre de Développement des Technologies Avancées (CDTA), Algiers 16081, Algeria.
Department of Computer Science, College of Staten Island, 2800 Victory Blvd Staten Island, New York, NY 10314, USA.
Diagnostics (Basel). 2022 Mar 7;12(3):649. doi: 10.3390/diagnostics12030649.
Recently many studies have shown the effectiveness of using augmented reality (AR) and virtual reality (VR) in biomedical image analysis. However, they are not automating the COVID level classification process. Additionally, even with the high potential of CT scan imagery to contribute to research and clinical use of COVID-19 (including two common tasks in lung image analysis: segmentation and classification of infection regions), publicly available data-sets are still a missing part in the system care for Algerian patients. This article proposes designing an automatic VR and AR platform for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic data analysis, classification, and visualization to address the above-mentioned challenges including (1) utilizing a novel automatic CT image segmentation and localization system to deliver critical information about the shapes and volumes of infected lungs, (2) elaborating volume measurements and lung voxel-based classification procedure, and (3) developing an AR and VR user-friendly three-dimensional interface. It also centered on developing patient questionings and medical staff qualitative feedback, which led to advances in scalability and higher levels of engagement/evaluations. The extensive computer simulations on CT image classification show a better efficiency against the state-of-the-art methods using a COVID-19 dataset of 500 Algerian patients. The developed system has been used by medical professionals for better and faster diagnosis of the disease and providing an effective treatment plan more accurately by using real-time data and patient information.
最近,许多研究表明在生物医学图像分析中使用增强现实(AR)和虚拟现实(VR)的有效性。然而,它们并未实现新冠水平分类过程的自动化。此外,尽管CT扫描图像在COVID-19的研究和临床应用方面具有很高潜力(包括肺部图像分析中的两项常见任务:感染区域的分割和分类),但对于阿尔及利亚患者的系统护理而言,公开可用的数据集仍然缺失。本文提出设计一个用于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)大流行数据分析、分类和可视化的自动VR和AR平台,以应对上述挑战,包括(1)利用新颖的自动CT图像分割和定位系统来提供有关受感染肺部形状和体积的关键信息,(2)详细阐述体积测量和基于肺体素的分类程序,以及(3)开发一个AR和VR用户友好的三维界面。它还专注于开展患者问询和医务人员的定性反馈,这带来了可扩展性的进步以及更高水平的参与度/评估。对CT图像分类进行的广泛计算机模拟表明,使用500名阿尔及利亚患者的COVID-19数据集,其效率优于现有最先进的方法。医疗专业人员已使用所开发的系统,通过使用实时数据和患者信息,更好、更快地诊断疾病,并更准确地提供有效的治疗方案。