Suppr超能文献

深度通路:一种用于完善精神病理学通路理论的深度学习方法。

Deep CANALs: a deep learning approach to refining the canalization theory of psychopathology.

作者信息

Juliani Arthur, Safron Adam, Kanai Ryota

机构信息

Microsoft Research , Microsoft, 300 Lafayette St, New York, NY 10012, USA.

Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21205, USA.

出版信息

Neurosci Conscious. 2024 Mar 26;2024(1):niae005. doi: 10.1093/nc/niae005. eCollection 2024.

Abstract

Psychedelic therapy has seen a resurgence of interest in the last decade, with promising clinical outcomes for the treatment of a variety of psychopathologies. In response to this success, several theoretical models have been proposed to account for the positive therapeutic effects of psychedelics. One of the more prominent models is "RElaxed Beliefs Under pSychedelics," which proposes that psychedelics act therapeutically by relaxing the strength of maladaptive high-level beliefs encoded in the brain. The more recent "CANAL" model of psychopathology builds on the explanatory framework of RElaxed Beliefs Under pSychedelics by proposing that canalization (the development of overly rigid belief landscapes) may be a primary factor in psychopathology. Here, we make use of learning theory in deep neural networks to develop a series of refinements to the original CANAL model. Our primary theoretical contribution is to disambiguate two separate optimization landscapes underlying belief representation in the brain and describe the unique pathologies which can arise from the canalization of each. Along each dimension, we identify pathologies of either too much or too little canalization, implying that the construct of canalization does not have a simple linear correlation with the presentation of psychopathology. In this expanded paradigm, we demonstrate the ability to make novel predictions regarding what aspects of psychopathology may be amenable to psychedelic therapy, as well as what forms of psychedelic therapy may ultimately be most beneficial for a given individual.

摘要

在过去十年中,迷幻疗法再度引起人们的关注,在治疗多种精神疾病方面展现出了颇具前景的临床效果。鉴于这一成功,人们提出了几种理论模型来解释迷幻药的积极治疗作用。其中一个较为突出的模型是“迷幻状态下的放松信念”(RElaxed Beliefs Under pSychedelics),该模型提出迷幻药通过放松大脑中编码的适应不良的高级信念的强度来发挥治疗作用。最近的精神病理学“CANAL”模型在“迷幻状态下的放松信念”的解释框架基础上进一步发展,提出渠道化(过度僵化的信念格局的形成)可能是精神病理学的一个主要因素。在此,我们利用深度神经网络中的学习理论对原始的CANAL模型进行了一系列改进。我们的主要理论贡献在于区分大脑中信念表征所基于的两种不同的优化格局,并描述每种格局渠道化可能产生的独特病理情况。在每个维度上,我们都识别出了渠道化过多或过少的病理情况,这意味着渠道化这一概念与精神病理学的表现并非简单的线性关系。在这个扩展的范式中,我们展示了能够对精神病理学的哪些方面可能适合迷幻疗法,以及哪种形式的迷幻疗法最终可能对特定个体最为有益做出新颖预测的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668f/10965250/8222b288be5f/niae005f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验