Goetz Aurèle, Jeken-Rico Pablo, Chau Yves, Sédat Jacques, Larcher Aurélien, Hachem Elie
Computing and Fluids Research Group, CEMEF, Mines Paris PSL, 06904 Sophia Antipolis, France.
Department of Neuro-Interventional and Vascular Interventional, University Hospital of Nice, 06000 Nice, France.
Bioengineering (Basel). 2024 Mar 9;11(3):269. doi: 10.3390/bioengineering11030269.
Computational fluid dynamics is intensively used to deepen our understanding of aneurysm growth and rupture in an attempt to support physicians during therapy planning. Numerous studies assumed fully rigid vessel walls in their simulations, whose sole haemodynamics may fail to provide a satisfactory criterion for rupture risk assessment. Moreover, direct in vivo observations of intracranial aneurysm pulsation were recently reported, encouraging the development of fluid-structure interaction for their modelling and for new assessments. In this work, we describe a new fluid-structure interaction functional setting for the careful evaluation of different aneurysm shapes. The configurations consist of three real aneurysm domes positioned on a toroidal channel. All geometric features, employed meshes, flow quantities, comparisons with the rigid wall model and corresponding plots are provided for the sake of reproducibility. The results emphasise the alteration of flow patterns and haemodynamic descriptors when wall deformations were taken into account compared with a standard rigid wall approach, thereby underlining the impact of fluid-structure interaction modelling.
计算流体动力学被广泛用于加深我们对动脉瘤生长和破裂的理解,以便在治疗规划过程中为医生提供支持。许多研究在模拟中假设血管壁完全刚性,但其单一的血流动力学可能无法为破裂风险评估提供令人满意的标准。此外,最近有报道称对颅内动脉瘤脉动进行了直接的体内观察,这促使人们开发流体-结构相互作用模型以对其进行建模和新的评估。在这项工作中,我们描述了一种新的流体-结构相互作用功能设置,用于仔细评估不同的动脉瘤形状。这些构型由位于环形通道上的三个真实动脉瘤穹顶组成。为了可重复性,提供了所有几何特征、使用的网格、流量、与刚性壁模型的比较以及相应的图表。结果强调,与标准的刚性壁方法相比,考虑壁变形时流动模式和血流动力学描述符的变化,从而突出了流体-结构相互作用建模的影响。