Luong Christina L, Jafari Mohammad H, Behnami Delaram, Shah Yaksh R, Straatman Lynn, Van Woudenberg Nathan, Christoff Leah, Gwadry Nancy, Hawkins Nathaniel M, Sayre Eric C, Yeung Darwin, Tsang Michael, Gin Ken, Jue John, Nair Parvathy, Abolmaesumi Purang, Tsang Teresa
Division of Cardiology, Diamond Health Care Centre 9th Floor Cardiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada.
Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
Echo Res Pract. 2024 Mar 28;11(1):9. doi: 10.1186/s44156-024-00043-2.
Machine learning (ML) algorithms can accurately estimate left ventricular ejection fraction (LVEF) from echocardiography, but their performance on cardiac point-of-care ultrasound (POCUS) is not well understood.
We evaluate the performance of an ML model for estimation of LVEF on cardiac POCUS compared with Level III echocardiographers' interpretation and formal echo reported LVEF.
Clinicians at a tertiary care heart failure clinic prospectively scanned 138 participants using hand-carried devices. Video data were analyzed offline by an ML model for LVEF. We compared the ML model's performance with Level III echocardiographers' interpretation and echo reported LVEF.
There were 138 participants scanned, yielding 1257 videos. The ML model generated LVEF predictions on 341 videos. We observed a good intraclass correlation (ICC) between the ML model's predictions and the reference standards (ICC = 0.77-0.84). When comparing LVEF estimates for randomized single POCUS videos, the ICC between the ML model and Level III echocardiographers' estimates was 0.772, and it was 0.778 for videos where quantitative LVEF was feasible. When the Level III echocardiographer reviewed all POCUS videos for a participant, the ICC improved to 0.794 and 0.843 when only accounting for studies that could be segmented. The ML model's LVEF estimates also correlated well with LVEF derived from formal echocardiogram reports (ICC = 0.798).
Our results suggest that clinician-driven cardiac POCUS produces ML model LVEF estimates that correlate well with expert interpretation and echo reported LVEF.
机器学习(ML)算法可从超声心动图准确估计左心室射血分数(LVEF),但其在心脏即时超声检查(POCUS)中的表现尚不清楚。
我们评估了一种ML模型在心脏POCUS上估计LVEF的性能,并与三级超声心动图医生的解读以及正式超声心动图报告的LVEF进行比较。
一家三级医疗中心心力衰竭诊所的临床医生使用手持式设备对138名参与者进行了前瞻性扫描。视频数据由一个用于LVEF的ML模型进行离线分析。我们将ML模型的性能与三级超声心动图医生的解读以及超声心动图报告的LVEF进行了比较。
共扫描了138名参与者,生成了1257个视频。ML模型对341个视频生成了LVEF预测。我们观察到ML模型的预测与参考标准之间具有良好的组内相关系数(ICC)(ICC = 0.77 - 0.84)。在比较随机单个POCUS视频的LVEF估计值时,ML模型与三级超声心动图医生估计值之间的ICC为0.772,对于定量LVEF可行的视频,ICC为0.778。当三级超声心动图医生查看一名参与者的所有POCUS视频时,仅考虑可分割的研究时,ICC分别提高到0.794和0.843。ML模型的LVEF估计值也与正式超声心动图报告得出的LVEF具有良好的相关性(ICC = 0.798)。
我们的结果表明,临床医生主导的心脏POCUS产生的ML模型LVEF估计值与专家解读以及超声心动图报告的LVEF具有良好的相关性。