Suppr超能文献

自动化三维超声心动图-HeartModel 与二维超声心动图 Simpson 方法评估左心室功能障碍患者左心室容积和射血分数的可靠性。

The Reliability of Automated Three-Dimensional Echocardiography-HeartModel Versus 2D Echocardiography Simpson Methods in Evaluation of Left Ventricle Volumes and Ejection Fraction in Patients With Left Ventricular Dysfunction.

机构信息

Polyclinic "Dr. Nabil", Sarajevo, Bosnia and Herzegovina.

Faculty of Medicine, University of Sarajevo, Bosnia and Herzegovina.

出版信息

Med Arch. 2022 Aug;76(4):259-266. doi: 10.5455/medarh.2022.76.259-266.

Abstract

BACKGROUND

Two-dimensional echocardiography (2DE) Simpson methods is the most frequently used imaging modality to assess Left ventricular ejection fraction (LVEF). LVEF is an important predictor of morbidity and mortality in a wide range of patients and clinical scenarios. Despite its importance in prognosis and clinical decision making, most echocardiography laboratories currently determine EF primarily by visual estimation, which is highly experience-dependent and sensitive to intra- and inter-observer variability and suboptimal accuracy and repeatability. Over the last decade, 3-dimensional echocardiography (3DE) has become increasingly implemented in clinical practice. The automated 3D HeartModel tracks every frame over the cardiac cycle using 3D speckle technology. HeartModel is a fully automated program that simultaneously detects LA and LV endocardial surfaces using an adaptive analytics algorithm that consists of knowledge-based identification of initial global shape and orientation followed by patient-specific adaptation.

OBJECTIVE

The objective of the study was to compare the automated 3D HeartModel echocardiography and 2D Simpson methods echocardiography in evaluation of the left ventricular ejection fraction and left ventricular volumes in patients with left heart dysfunction.

METHODS

The study prospectively enrolled 165 patients with symptoms of LV dysfunction (ischemic or nonischemic) and New York Heart Association (NYHA) functional class I-III, referred for an echocardiographic study to evaluate the LV volumes and LV ejection fraction (LVEF) during the period from March 2020 to March 2022. Echocardiographic images were acquired by experienced echocardiographers using a commercially available Philips EPIQ machine (Koninklijke Philips Ultrasound, USA) equipped with X5-1 Matrix probe for 2DE and DHM 3DE acquisitions, respectively.

RESULTS

2D Simpson methods echocardiography results for estimated LVEF were 38.43 ± 1.70 in patients with NYHA class I-II, 30.53 ± 1.60 in patients with NYHA class III. Using 3D Heart Model, LVEF were 38.23 ± 1.71 in patients with NYHA class I-II and 30.27 ± 1.50 in patients with NYHA class III. The results of 2D Simpson methods echocardiography for estimated LVEDVi in NYHA class I-II and NYHA class III were 99.06 ± 6.36 ml/m2, 121.96 ± 2.93 ml/m2 respectively, LVESVi were 60.91 ± 3.91 ml/m2, 84.74 ± 2.70 ml/m2 respectively, for 3D Heart Model, LVEDVi in NYHA class I-II and NYHA class III were 100.07 ± 6.72, 121.38 ± 3.01 ml/m2 respectively, LVESVi were 61.75 ± 3.94 ml/m2, 84.73 ± 2.33 ml/m2 respectively. 2DE measurement of LV volumes and EF was completed in 6.1 ± 0.8 min. per patient. 3DE HeartModel acquisition and analysis in most patients was completed in <3.2 min., an average time of 2.9 ± 1.3 min. per patient. The result of our study shows that the 3D HeartModel. is a reliable and robust method for LVEF and LV volume analysis, which has similar results to 2D echocardiography performed by experienced sonographers. In this study, we found that 3DE DHM fully automated tool is also significantly faster than 2DE analysis and thus can help overcome the time-consuming nature and its present a strong argument for its incorporation into the clinical workflow. In this study, we found that 3DE DHM fully automated tool is also significantly faster than 2DE analysis and thus can help overcome the time-consuming nature and its present a strong argument for its incorporation into the clinical workflow.

CONCLUSION

3D DHM provides fast and accurate LV volumes and LVEF quantitation, as it avoids geometric assumptions and left ventricular foreshortening, has better reproducibility and has incremental value to predict adverse outcomes in comparison with conventional 2DE. In the future major benefit of AI in echocardiography is expected from improvements in automated analysis and interpretation to reduce workload and improve clinical outcome.

摘要

背景

二维超声心动图(2DE)辛普森法是评估左心室射血分数(LVEF)最常用的影像学方法。LVEF 是广泛患者和临床情况下发病率和死亡率的重要预测因素。尽管它在预后和临床决策制定中很重要,但目前大多数超声心动图实验室主要通过视觉估计来确定 EF,这高度依赖经验,并且容易受到观察者内和观察者间变异性以及不太准确和可重复性的影响。在过去的十年中,三维超声心动图(3DE)已在临床实践中得到越来越多的应用。自动化的 3D HeartModel 使用 3D 斑点技术跟踪心脏周期中的每一个帧。HeartModel 是一个完全自动化的程序,它使用自适应分析算法同时检测 LA 和 LV 心内膜表面,该算法包括基于知识的初始全局形状和方向的识别,然后是患者特定的适应。

目的

本研究的目的是比较自动 3D HeartModel 超声心动图和 2D 辛普森法超声心动图在评估左心功能障碍患者的左心室射血分数和左心室容积中的应用。

方法

本研究前瞻性纳入了 165 例有 LV 功能障碍(缺血性或非缺血性)和纽约心脏协会(NYHA)心功能 I-III 级症状的患者,这些患者因评估 LV 容积和 LV 射血分数(LVEF)而接受超声心动图检查在 2020 年 3 月至 2022 年 3 月期间。由经验丰富的超声心动图医师使用配备 X5-1 矩阵探头的商业可用的飞利浦 EPIQ 机器(美国皇家飞利浦超声)分别进行 2DE 和 DHM 3DE 采集。

结果

NYHA 心功能 I-II 级患者的 2D 辛普森法超声心动图估计 LVEF 结果为 38.43 ± 1.70,NYHA 心功能 III 级患者为 30.53 ± 1.60。使用 3D HeartModel,NYHA 心功能 I-II 级患者的 LVEF 为 38.23 ± 1.71,NYHA 心功能 III 级患者为 30.27 ± 1.50。NYHA 心功能 I-II 级和 NYHA 心功能 III 级患者的 2D 辛普森法超声心动图估计 LVEDVi 结果分别为 99.06 ± 6.36 ml/m2 和 121.96 ± 2.93 ml/m2,LVESVi 结果分别为 60.91 ± 3.91 ml/m2 和 84.74 ± 2.70 ml/m2,对于 3D HeartModel,NYHA 心功能 I-II 级和 NYHA 心功能 III 级患者的 LVEDVi 分别为 100.07 ± 6.72 和 121.38 ± 3.01 ml/m2,LVESVi 分别为 61.75 ± 3.94 ml/m2 和 84.73 ± 2.33 ml/m2。2DE 测量 LV 容积和 EF 完成每个患者的时间为 6.1 ± 0.8 分钟。。大多数患者的 3D HeartModel 采集和分析在 <3.2 分钟内完成,平均每个患者的时间为 2.9 ± 1.3 分钟。我们的研究结果表明,3D HeartModel. 是一种可靠且强大的 LVEF 和 LV 容积分析方法,其结果与经验丰富的超声心动图医师进行的 2D 超声心动图相似。在这项研究中,我们发现 3DE DHM 全自动工具也明显快于 2DE 分析,因此可以帮助克服耗时的性质,并为其纳入临床工作流程提供了强有力的论据。在这项研究中,我们发现 3DE DHM 全自动工具也明显快于 2DE 分析,因此可以帮助克服耗时的性质,并为其纳入临床工作流程提供了强有力的论据。

结论

3D DHM 提供快速准确的 LV 容积和 LVEF 定量,因为它避免了几何假设和左心室缩短,具有更好的可重复性,并与传统 2DE 相比具有预测不良结局的增量价值。在未来,人工智能在超声心动图中的主要优势预计将来自于自动分析和解释的改进,以减少工作量并改善临床结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc1/9559669/618590101ec0/medarch-76-259-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验