Suppr超能文献

机器学习算法支持超声零基础的新手获取诊断超声心动图图像,并提供准确的 LVEF 估计。

A machine learning algorithm supports ultrasound-naïve novices in the acquisition of diagnostic echocardiography loops and provides accurate estimation of LVEF.

机构信息

Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.

出版信息

Int J Cardiovasc Imaging. 2021 Feb;37(2):577-586. doi: 10.1007/s10554-020-02046-6. Epub 2020 Oct 8.

Abstract

Left ventricular ejection fraction (LVEF) is the most important parameter in the assessment of cardiac function. A machine-learning algorithm was trained to guide ultrasound-novices to acquire diagnostic echocardiography images. The artificial intelligence (AI) algorithm then estimates LVEF from the captured apical-4-chamber (AP4), apical-2-chamber (AP2), and parasternal-long-axis (PLAX) loops. We sought to test this algorithm by having first-year medical students without previous ultrasound knowledge scan real patients. Nineteen echo-naïve first-year medical students were trained in the basics of echocardiography by a 2.5 h online video tutorial. Each student then scanned three patients with the help of the AI. Image quality was graded according to the American College of Emergency Physicians scale. If rated as diagnostic quality, the AI calculated LVEF from the acquired loops (monoplane and also a "best-LVEF" considering all views acquired in the particular patient). These LVEF calculations were compared to images of the same patients captured and read by three experts (ground-truth LVEF [GT-EF]). The novices acquired diagnostic-quality images in 33/57 (58%), 49/57 (86%), and 39/57 (68%) patients in the PLAX, AP4, and AP2, respectively. At least one of the three views was obtained in 91% of the attempts. We found an excellent agreement between the machine's LVEF calculations from images acquired by the novices with the GT-EF (bias of 3.5% ± 5.6 and r = 0.92, p < 0.001 in the "best-LVEF" algorithm). This pilot study shows first evidence that a machine-learning algorithm can guide ultrasound-novices to acquire diagnostic echo loops and provide an automated LVEF calculation that is in agreement with a human expert.

摘要

左心室射血分数(LVEF)是评估心功能最重要的参数。我们训练了一个机器学习算法来指导超声新手获取诊断性超声心动图图像。人工智能(AI)算法随后会从捕获的心尖四腔(AP4)、心尖两腔(AP2)和胸骨旁长轴(PLAX)环中估计 LVEF。我们试图让没有先前超声知识的一年级医学生扫描真实患者来测试这个算法。19 名对超声一无所知的一年级医学生通过一个 2.5 小时的在线视频教程接受了超声基础知识的培训。然后,每位学生在 AI 的帮助下扫描了 3 名患者。根据美国急诊医师学会(American College of Emergency Physicians)的评分标准对图像质量进行分级。如果评为诊断质量,AI 会从获取的环中计算 LVEF(单平面,以及考虑到在特定患者中获取的所有视图的“最佳 LVEF”)。将这些 LVEF 计算值与同一患者的图像进行比较,这些图像是由三位专家(真实 LVEF [GT-EF])捕获和读取的。新手在 PLAX、AP4 和 AP2 中分别有 33/57(58%)、49/57(86%)和 39/57(68%)名患者获得了诊断质量的图像。在 91%的尝试中,至少获得了三个视图中的一个。我们发现,新手获取的图像的机器 LVEF 计算值与 GT-EF 之间存在极好的一致性(在“最佳 LVEF”算法中,偏差为 3.5%±5.6,r=0.92,p<0.001)。这项初步研究首次证明,机器学习算法可以指导超声新手获取诊断性超声心动图环,并提供与人类专家一致的自动 LVEF 计算。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/668a/7900039/8d2b16c5f414/10554_2020_2046_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验