Yin Kuan, Feng Jiangfan, Dong Shaokang
School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
College of Artificial Intelligence and Big Data, Chongqing College of Electronic Engineering, Chongqing 401331, China.
Animals (Basel). 2024 Mar 14;14(6):902. doi: 10.3390/ani14060902.
Animal tracking is crucial for understanding migration, habitat selection, and behavior patterns. However, challenges in video data acquisition and the unpredictability of animal movements have hindered progress in this field. To address these challenges, we present a novel animal tracking method based on correlation filters. Our approach integrates hand-crafted features, deep features, and temporal context information to learn a rich feature representation of the target animal, enabling effective monitoring and updating of its state. Specifically, we extract hand-crafted histogram of oriented gradient features and deep features from different layers of the animal, creating tailored fusion features that encapsulate both appearance and motion characteristics. By analyzing the response map, we select optimal fusion features based on the oscillation degree. When the target animal's state changes significantly, we adaptively update the target model using temporal context information and robust feature data from the current frame. This updated model is then used for re-tracking, leading to improved results compared to recent mainstream algorithms, as demonstrated in extensive experiments conducted on our self-constructed animal datasets. By addressing specific challenges in animal tracking, our method offers a promising approach for more effective and accurate animal behavior research.
动物追踪对于理解动物迁徙、栖息地选择和行为模式至关重要。然而,视频数据采集方面的挑战以及动物运动的不可预测性阻碍了该领域的进展。为应对这些挑战,我们提出了一种基于相关滤波器的新型动物追踪方法。我们的方法整合了手工特征、深度特征和时间上下文信息,以学习目标动物丰富的特征表示,从而能够有效地监测和更新其状态。具体而言,我们从动物的不同层提取手工制作的方向梯度直方图特征和深度特征,创建定制的融合特征,这些特征封装了外观和运动特征。通过分析响应图,我们根据振荡程度选择最优融合特征。当目标动物的状态发生显著变化时,我们利用时间上下文信息和当前帧的鲁棒特征数据自适应地更新目标模型。然后将这个更新后的模型用于重新追踪,与最近的主流算法相比,实验结果得到了改善,这在我们自建的动物数据集上进行的大量实验中得到了证明。通过应对动物追踪中的特定挑战,我们的方法为更有效、准确的动物行为研究提供了一种有前景的方法。