Suppr超能文献

患者生成的健康数据(PGHD):数据安全与隐私方面的理解、要求、挑战及现有技术

Patient-Generated Health Data (PGHD): Understanding, Requirements, Challenges, and Existing Techniques for Data Security and Privacy.

作者信息

Khatiwada Pankaj, Yang Bian, Lin Jia-Chun, Blobel Bernd

机构信息

Department of Information Security and Communication Technology (IIK), Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway.

Medical Faculty, University of Regensburg, 93053 Regensburg, Germany.

出版信息

J Pers Med. 2024 Mar 3;14(3):282. doi: 10.3390/jpm14030282.

Abstract

The evolution of Patient-Generated Health Data (PGHD) represents a major shift in healthcare, fueled by technological progress. The advent of PGHD, with technologies such as wearable devices and home monitoring systems, extends data collection beyond clinical environments, enabling continuous monitoring and patient engagement in their health management. Despite the growing prevalence of PGHD, there is a lack of clear understanding among stakeholders about its meaning, along with concerns about data security, privacy, and accuracy. This article aims to thoroughly review and clarify PGHD by examining its origins, types, technological foundations, and the challenges it faces, especially in terms of privacy and security regulations. The review emphasizes the role of PGHD in transforming healthcare through patient-centric approaches, their understanding, and personalized care, while also exploring emerging technologies and addressing data privacy and security issues, offering a comprehensive perspective on the current state and future directions of PGHD. The methodology employed for this review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and Rayyan, AI-Powered Tool for Systematic Literature Reviews. This approach ensures a systematic and comprehensive coverage of the available literature on PGHD, focusing on the various aspects outlined in the objective. The review encompassed 36 peer-reviewed articles from various esteemed publishers and databases, reflecting a diverse range of methodologies, including interviews, regular articles, review articles, and empirical studies to address three RQs exploratory, impact assessment, and solution-oriented questions related to PGHD. Additionally, to address the future-oriented fourth RQ for PGHD not covered in the above review, we have incorporated existing domain knowledge articles. This inclusion aims to provide answers encompassing both basic and advanced security measures for PGHD, thereby enhancing the depth and scope of our analysis.

摘要

患者生成的健康数据(PGHD)的发展代表了医疗保健领域的重大转变,这一转变由技术进步推动。PGHD的出现,借助可穿戴设备和家庭监测系统等技术,将数据收集扩展到临床环境之外,实现了持续监测以及患者对自身健康管理的参与。尽管PGHD的普及率不断提高,但利益相关者对其含义缺乏清晰的理解,同时还存在对数据安全、隐私和准确性的担忧。本文旨在通过研究PGHD的起源、类型、技术基础及其面临的挑战,特别是在隐私和安全法规方面的挑战,对其进行全面审查和澄清。该审查强调了PGHD在通过以患者为中心的方法、理解和个性化护理来转变医疗保健方面的作用,同时还探索了新兴技术并解决数据隐私和安全问题,为PGHD的当前状态和未来方向提供了全面的视角。本审查采用的方法遵循系统评价和荟萃分析的首选报告项目(PRISMA)指南以及Rayyan(用于系统文献综述的人工智能工具)。这种方法确保了对关于PGHD的现有文献进行系统和全面的覆盖,重点关注目标中概述的各个方面。该审查涵盖了来自各种知名出版商和数据库的36篇同行评审文章,反映了包括访谈、常规文章、综述文章和实证研究在内的多种方法,以解决与PGHD相关的三个研究问题:探索性问题、影响评估问题和面向解决方案的问题。此外,为了解决上述审查未涵盖的PGHD的面向未来的第四个研究问题,我们纳入了现有的领域知识文章。这种纳入旨在提供涵盖PGHD基本和高级安全措施的答案,从而加深我们分析的深度和广度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/486f/10971637/f65ba42feeb7/jpm-14-00282-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验