School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
Viruses. 2024 Mar 9;16(3):422. doi: 10.3390/v16030422.
Phages provide a potential therapy for multi-drug-resistant (MDR) bacteria. However, a significant portion of viral genes often remains unknown, posing potential dangers. The identification of non-essential genes helps dissect and simplify phage genomes, but current methods have various limitations. In this study, we present an in vivo two-plasmid transposon insertion system to assess the importance of phage genes, which is based on the transposon Tn, encoding a nuclease-deficient type I-F CRISPR-Cas system. We first validated the system in PAO1 and its phage S1. We then used the selection marker AcrVA1 to protect transposon-inserted phages from CRISPR-Cas12a and enriched the transposon-inserted phages. For a pool of selected 10 open-reading frames (2 known functional protein genes and 8 hypothetical protein genes) of phage S1, we identified 5 (2 known functional protein genes and 3 hypothetical protein genes) as indispensable genes and the remaining 5 (all hypothetical protein genes) as dispensable genes. This approach offers a convenient, site-specific method that does not depend on homologous arms and double-strand breaks (DSBs), holding promise for future applications across a broader range of phages and facilitating the identification of the importance of phage genes and the insertion of genetic cargos.
噬菌体为多药耐药(MDR)细菌提供了一种潜在的治疗方法。然而,相当一部分病毒基因通常是未知的,这带来了潜在的危险。非必需基因的鉴定有助于剖析和简化噬菌体基因组,但目前的方法存在各种局限性。在这项研究中,我们提出了一种体内双质粒转座子插入系统,用于评估噬菌体基因的重要性,该系统基于转座子 Tn,它编码一种缺乏核酸酶的 I-F 型 CRISPR-Cas 系统。我们首先在 PAO1 及其噬菌体 S1 中验证了该系统。然后,我们使用选择标记 AcrVA1 来保护转座子插入的噬菌体免受 CRISPR-Cas12a 的影响,并富集转座子插入的噬菌体。对于噬菌体 S1 的 10 个开放阅读框(2 个已知功能蛋白基因和 8 个假定蛋白基因)的选择池,我们确定了 5 个(2 个已知功能蛋白基因和 3 个假定蛋白基因)为必需基因,其余 5 个(均为假定蛋白基因)为非必需基因。这种方法提供了一种方便的、特异性的方法,不依赖于同源臂和双链断裂(DSBs),为更广泛的噬菌体的未来应用提供了希望,并有助于鉴定噬菌体基因的重要性和插入遗传载体。