Suppr超能文献

基于纠错输出码(ECOC)和卷积神经网络(CNN)的体育活动(SA)识别

Sports activity (SA) recognition based on error correcting output codes (ECOC) and convolutional neural network (CNN).

作者信息

Lyu Lu, Huang Yong

机构信息

Shandong University of Aeronautics, BinZhou, Shandong, 256600, China.

Yong Huang, Soongsil University, Seoul, 06978, Republic of Korea.

出版信息

Heliyon. 2024 Mar 19;10(6):e28258. doi: 10.1016/j.heliyon.2024.e28258. eCollection 2024 Mar 30.

Abstract

The increasing use of motion sensors is causing major changes in the process of monitoring people's activities. One of the main applications of these sensors is the detection of sports activities, for example, they can be used to monitor the condition of athletes or analyze the quality of sports training. Although the existing sensor-based activity recognition systems can recognize basic activities such as: walking, running, or sitting; they don't perform well in recognizing different types of sports activities. This article introduces a new model based on machine learning (ML) techniques to more accurately distinguish between sports and everyday activities. In the proposed method, the necessary data to detect the type of activity is collected through his two sensors: an accelerometer and a gyroscope attached to a person's foot. For this purpose, the input signals are first preprocessed and then short-time Fourier transform (STFT) is used to describe the characteristics of each signal. In the next step, each STFT matrix is used as input to a convolutional neural network (CNN). This CNN describes various motion characteristics of the sensor in the form of vectors. Finally, a classification model based on error correction output code (ECOC) is used to classify the extracted features and detect the type of SA. The performance of the proposed AS recognition method is evaluated using the DSADS database and the results are compared with previous methods. Based on the results, the proposed method can recognize sports activities with an accuracy of 99.71. Furthermore, the performance of the proposed method based on precision and recall criteria are 99.72 and 99.71, respectively, which are better than the compared methods.

摘要

运动传感器使用的不断增加正在给监测人们活动的过程带来重大变化。这些传感器的主要应用之一是检测体育活动,例如,它们可用于监测运动员的状况或分析体育训练的质量。尽管现有的基于传感器的活动识别系统能够识别诸如行走、跑步或坐着等基本活动,但它们在识别不同类型的体育活动方面表现不佳。本文介绍了一种基于机器学习(ML)技术的新模型,以更准确地区分体育活动和日常活动。在所提出的方法中,通过附着在人脚上的加速度计和陀螺仪这两个传感器收集检测活动类型所需的数据。为此,首先对输入信号进行预处理,然后使用短时傅里叶变换(STFT)来描述每个信号的特征。在下一步中,将每个STFT矩阵用作卷积神经网络(CNN)的输入。该CNN以向量形式描述传感器的各种运动特征。最后,使用基于纠错输出码(ECOC)的分类模型对提取的特征进行分类并检测体育活动的类型。使用DSADS数据库评估所提出的体育活动识别方法的性能,并将结果与以前的方法进行比较。基于结果,所提出的方法能够以99.71%的准确率识别体育活动。此外,所提出方法基于精确率和召回率标准的性能分别为99.72%和99.71%,优于所比较的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d51/10965824/cab77a019a8f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验