Suppr超能文献

对巴西玛瑙斯市新冠病毒肺炎意外动态的建模。

Modelling the unexpected dynamics of COVID-19 in Manaus, Brazil.

作者信息

He Daihai, Artzy-Randrup Yael, Musa Salihu S, Gräf Tiago, Naveca Felipe, Stone Lewi

机构信息

Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong SAR, China.

Department of Theoretical and Computational Ecology, IBED, University of Amsterdam, Amsterdam, Netherlands.

出版信息

Infect Dis Model. 2024 Mar 6;9(2):557-568. doi: 10.1016/j.idm.2024.02.012. eCollection 2024 Jun.

Abstract

In late March 2020, SARS-CoV-2 arrived in Manaus, Brazil, and rapidly developed into a large-scale epidemic that collapsed the local health system and resulted in extreme death rates. Several key studies reported that ∼76% of residents of Manaus were infected (attack rate AR≃76%) by October 2020, suggesting protective herd immunity had been reached. Despite this, an unexpected second wave of COVID-19 struck again in November and proved to be larger than the first, creating a catastrophe for the unprepared population. It has been suggested that this could be possible if the second wave was driven by reinfections. However, it is widely reported that reinfections were at a low rate (before the emergence of Omicron), and reinfections tend to be mild. Here, we use novel methods to model the epidemic from mortality data without considering reinfection-caused deaths and evaluate the impact of interventions to explain why the second wave appeared. The method fits a "flexible" reproductive number that changes over the epidemic, and it is demonstrated that the method can successfully reconstruct from simulated data. For Manaus, the method finds AR≃34% by October 2020 for the first wave, which is far less than required for herd immunity yet in-line with seroprevalence estimates. The work is complemented by a two-strain model. Using genomic data, the model estimates transmissibility of the new P.1 virus lineage as 1.9 times higher than that of the non-P.1. Moreover, an age class model variant that considers the high mortality rates of older adults show very similar results. These models thus provide a reasonable explanation for the two-wave dynamics in Manaus without the need to rely on large reinfection rates, which until now have only been found in negligible to moderate numbers in recent surveillance efforts.

摘要

2020年3月下旬,严重急性呼吸综合征冠状病毒2(SARS-CoV-2)抵达巴西玛瑙斯,并迅速演变成一场大规模疫情,导致当地卫生系统崩溃,死亡率极高。几项关键研究报告称,到2020年10月,玛瑙斯约76%的居民被感染(感染率AR≃76%),这表明已达到保护性群体免疫。尽管如此,2020年11月,第二波意想不到的新冠疫情再次来袭,且规模比第一波更大,给毫无防备的民众带来了灾难。有人认为,如果第二波疫情是由再次感染引发的,那么这种情况就有可能发生。然而,据广泛报道,再次感染的发生率很低(在奥密克戎出现之前),而且再次感染往往症状较轻。在此,我们使用新方法从死亡率数据对疫情进行建模,不考虑再次感染导致的死亡,并评估干预措施的影响,以解释第二波疫情出现的原因。该方法拟合了一个在疫情期间变化的“灵活”再生数,并且证明该方法能够从模拟数据中成功重建。对于玛瑙斯,该方法得出第一波疫情到2020年10月时的感染率AR≃34%,这远低于群体免疫所需水平,但与血清流行率估计相符。这项工作得到了一个双毒株模型的补充。利用基因组数据,该模型估计新的P.1病毒谱系的传播力比非P.1病毒谱系高1.9倍。此外,一个考虑到老年人高死亡率的年龄组模型变体显示出非常相似的结果。因此,这些模型为玛瑙斯的两波疫情动态提供了合理的解释,而无需依赖高再次感染率,到目前为止,在最近的监测工作中,再次感染的发生率仅为可忽略不计到中等数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bca/10966176/1eb2d0d2dae7/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验