Luria Gianvittorio, Viani Alessandro, Pascarella Annalisa, Bornfleth Harald, Sommariva Sara, Sorrentino Alberto
Bayesian Estimation for Engineering Solutions srl, Genoa, Italy.
Department of Mathematics, University of Genoa, Genoa, Italy.
Front Hum Neurosci. 2024 Mar 13;18:1359753. doi: 10.3389/fnhum.2024.1359753. eCollection 2024.
Source localization from M/EEG data is a fundamental step in many analysis pipelines, including those aiming at clinical applications such as the pre-surgical evaluation in epilepsy. Among the many available source localization algorithms, SESAME (SEquential SemiAnalytic Montecarlo Estimator) is a Bayesian method that distinguishes itself for several good reasons: it is highly accurate in localizing focal sources with comparably little sensitivity to input parameters; it allows the quantification of the uncertainty of the reconstructed source(s); it accepts user-defined high- and low-probability search regions in input; it can localize the generators of neural oscillations in the frequency domain. Both a Python and a MATLAB implementation of SESAME are available as open-source packages under the name of SESAMEEG and are well integrated with the main software packages used by the M/EEG community; moreover, the algorithm is part of the commercial software BESA Research (from version 7.0 onwards). While SESAMEEG is arguably simpler to use than other source modeling methods, it has a much richer output that deserves to be described thoroughly. In this article, after a gentle mathematical introduction to the algorithm, we provide a complete description of the available output and show several use cases on experimental M/EEG data.
从脑磁图/脑电图(M/EEG)数据中进行源定位是许多分析流程中的基本步骤,包括那些旨在用于临床应用的流程,如癫痫手术前评估。在众多可用的源定位算法中,SESAME(顺序半解析蒙特卡罗估计器)是一种贝叶斯方法,因其诸多优点而脱颖而出:它在定位局灶性源时高度准确,对输入参数的敏感性相对较低;它允许对重建源的不确定性进行量化;它接受用户定义的输入中的高概率和低概率搜索区域;它可以在频域中定位神经振荡的发生器。SESAME的Python和MATLAB实现都以SESAMEEG的名称作为开源包提供,并且与M/EEG社区使用的主要软件包很好地集成;此外,该算法是商业软件BESA Research(从7.0版本起)的一部分。虽然SESAMEEG可以说比其他源建模方法更易于使用,但它有更丰富的输出,值得进行全面描述。在本文中,在对该算法进行简要的数学介绍之后,我们对可用输出进行了完整描述,并展示了在实验性M/EEG数据上的几个用例。