Irwin Chase, Tjandra Donna, Hu Chengcheng, Aggarwal Vinod, Lienau Amanda, Giordani Bruno, Wiens Jenna, Migrino Raymond Q
Phoenix Veterans Affairs Health Care System Phoenix Arizona USA.
University of Arizona College of Medicine-Phoenix Phoenix Arizona USA.
Alzheimers Dement (Amst). 2024 Mar 26;16(1):e12572. doi: 10.1002/dad2.12572. eCollection 2024 Jan-Mar.
Identifying mild cognitive impairment (MCI) patients at risk for dementia could facilitate early interventions. Using electronic health records (EHRs), we developed a model to predict MCI to all-cause dementia (ACD) conversion at 5 years.
Cox proportional hazards model was used to identify predictors of ACD conversion from EHR data in veterans with MCI. Model performance (area under the receiver operating characteristic curve [AUC] and Brier score) was evaluated on a held-out data subset.
Of 59,782 MCI patients, 15,420 (25.8%) converted to ACD. The model had good discriminative performance (AUC 0.73 [95% confidence interval (CI) 0.72-0.74]), and calibration (Brier score 0.18 [95% CI 0.17-0.18]). Age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors, while body mass index, alcohol abuse, and sleep apnea were protective factors.
EHR-based prediction model had good performance in identifying 5-year MCI to ACD conversion and has potential to assist triaging of at-risk patients.
Of 59,782 veterans with mild cognitive impairment (MCI), 15,420 (25.8%) converted to all-cause dementia within 5 years.Electronic health record prediction models demonstrated good performance (area under the receiver operating characteristic curve 0.73; Brier 0.18).Age and vascular-related morbidities were predictors of dementia conversion.Synthetic data was comparable to real data in modeling MCI to dementia conversion.
An electronic health record-based model using demographic and co-morbidity data had good performance in identifying veterans who convert from mild cognitive impairment (MCI) to all-cause dementia (ACD) within 5 years.Increased age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors for 5-year conversion from MCI to ACD.High body mass index, alcohol abuse, and sleep apnea were protective factors for 5-year conversion from MCI to ACD.Models using synthetic data, analogs of real patient data that retain the distribution, density, and covariance between variables of real patient data but are not attributable to any specific patient, performed just as well as models using real patient data. This could have significant implications in facilitating widely distributed computing of health-care data with minimized patient privacy concern that could accelerate scientific discoveries.
识别有患痴呆症风险的轻度认知障碍(MCI)患者有助于早期干预。我们利用电子健康记录(EHR)开发了一个模型,以预测MCI患者在5年内转化为全因性痴呆(ACD)的情况。
使用Cox比例风险模型从患有MCI的退伍军人的EHR数据中识别ACD转化的预测因素。在一个留出的数据子集中评估模型性能(受试者工作特征曲线下面积[AUC]和Brier评分)。
在59782例MCI患者中,15420例(25.8%)转化为ACD。该模型具有良好的判别性能(AUC为0.73[95%置信区间(CI)0.72 - 0.74])和校准度(Brier评分为0.18[95%CI 0.17 - 0.18])。年龄、中风、脑血管疾病、心肌梗死、高血压和糖尿病是危险因素,而体重指数、酒精滥用和睡眠呼吸暂停是保护因素。
基于EHR的预测模型在识别5年MCI向ACD转化方面表现良好,有潜力协助对高危患者进行分类。
在59782例患有轻度认知障碍(MCI)的退伍军人中,15420例(25.8%)在5年内转化为全因性痴呆。电子健康记录预测模型表现良好(受试者工作特征曲线下面积为0.73;Brier评分为0.18)。年龄和血管相关疾病是痴呆转化的预测因素。在模拟MCI向痴呆转化的模型中,合成数据与真实数据相当。
一个基于电子健康记录的模型,利用人口统计学和合并症数据,在识别5年内从轻度认知障碍(MCI)转化为全因性痴呆(ACD)的退伍军人方面表现良好。年龄增加、中风、脑血管疾病、心肌梗死、高血压和糖尿病是MCI在5年内转化为ACD的危险因素。高体重指数、酒精滥用和睡眠呼吸暂停是MCI在5年内转化为ACD的保护因素。使用合成数据(真实患者数据的类似物,保留真实患者数据变量之间的分布、密度和协方差,但不归因于任何特定患者)的模型与使用真实患者数据的模型表现一样好。这可能对促进医疗保健数据的广泛分布式计算具有重要意义,同时将患者隐私问题降至最低,从而加速科学发现。