Suppr超能文献

愿意提供头发样本进行药物检测:一项匿名多城市拦截调查的结果。

Willingness to provide a hair sample for drug testing: results from an anonymous multi-city intercept survey.

机构信息

Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA.

Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA.

出版信息

Am J Drug Alcohol Abuse. 2024 Mar 3;50(2):261-268. doi: 10.1080/00952990.2024.2309654. Epub 2024 Mar 28.

Abstract

Hair provision for drug testing can provide secondary measurement to complement self-reported drug use data, thereby providing a more accurate representation of an individual's drug use. Understanding factors associated with hair provision offers valuable insights into recruitment methods. To identify demographic and drug-related correlates of providing hair samples in a multi-site venue-intercept study. We utilized venue-intercept sampling for our Rapid Street Reporting study across 12 US cities between January and November 2022. Participants reported past 12-month drug use and were asked if they would provide a hair sample. We conducted multivariable (generalized linear model with logit link) analyses on demographics and drug use characteristics correlated to hair provision for drug testing. Among 3,045 participants, 55.8% were male, 13.6% provided hair samples. Compared to males, those identifying as "other gender" had higher odds of hair collection (adjusted odds ratio = 2.24, 95% confidence interval: 1.28-3.80). Participants identifying as Black (aOR = 0.32, CI: 0.23-0.45) or "other race" (aOR = 0.50, 95% CI: 0.29-0.80) had lower odds of providing hair than those identifying as White. All levels of reported drug use - one drug (aOR=1.50, 95% CI: 1.15-1.96), two-three drugs (aOR=1.51, 95% CI: 1.11-2.05), four or more (aOR = 2.13, 95% CI: 1.50-3.01) - had higher odds of providing hair samples than those reporting no drug use. Similar associations applied to reporting cannabis use with or without another drug (aOR = 1.52-1.81, 95% CI: 1.15-2.38). Differential hair provision based on participant sex, race/ethnicity, and drug use may introduce biases in drug testing, limiting generalizability to individuals from minority backgrounds.

摘要

毛发检测可提供次要的测量结果,以补充自我报告的药物使用数据,从而更准确地反映个人的药物使用情况。了解与提供毛发样本相关的因素可为招募方法提供有价值的见解。在一项多地点拦截研究中,我们利用地点拦截抽样对 2022 年 1 月至 11 月期间在美国 12 个城市进行的快速街头报告研究中的参与者进行了调查。参与者报告了过去 12 个月的药物使用情况,并被问及是否愿意提供毛发样本。我们对与提供毛发样本进行药物检测相关的人口统计学和药物使用特征进行了多变量(对数链接的广义线性模型)分析。在 3045 名参与者中,55.8%为男性,13.6%提供了毛发样本。与男性相比,其他性别认同者更有可能进行毛发采集(调整后的优势比=2.24,95%置信区间:1.28-3.80)。与白人相比,黑人(aOR=0.32,CI:0.23-0.45)或“其他种族”(aOR=0.50,95%CI:0.29-0.80)参与者提供毛发的可能性较低。报告使用一种药物(aOR=1.50,95%CI:1.15-1.96)、两种至三种药物(aOR=1.51,95%CI:1.11-2.05)、四种或更多种药物(aOR=2.13,95%CI:1.50-3.01)的所有报告药物使用水平均高于未报告药物使用的参与者提供毛发样本的可能性。对于同时报告使用大麻和其他药物或单独报告使用大麻的情况,也存在类似的关联(aOR=1.52-1.81,95%CI:1.15-2.38)。基于参与者的性别、种族/民族和药物使用情况的毛发检测差异可能会导致药物检测产生偏差,从而限制了对来自少数族裔背景的个体的普遍性。

相似文献

1
Willingness to provide a hair sample for drug testing: results from an anonymous multi-city intercept survey.
Am J Drug Alcohol Abuse. 2024 Mar 3;50(2):261-268. doi: 10.1080/00952990.2024.2309654. Epub 2024 Mar 28.
2
Willingness to provide a hair sample for drug testing among electronic dance music party attendees.
Subst Abus. 2019;40(1):116-123. doi: 10.1080/08897077.2018.1469106. Epub 2018 Aug 17.
5
Racial and Ethnic Differences in Cannabis Use Following Legalization in US States With Medical Cannabis Laws.
JAMA Netw Open. 2021 Sep 1;4(9):e2127002. doi: 10.1001/jamanetworkopen.2021.27002.
6
Sociodemographic Characteristics Associated With and Prevalence and Frequency of Cannabis Use Among Adults in the US.
JAMA Netw Open. 2021 Nov 1;4(11):e2136571. doi: 10.1001/jamanetworkopen.2021.36571.
9
Underreporting of drug use among electronic dance music party attendees.
Clin Toxicol (Phila). 2021 Mar;59(3):185-192. doi: 10.1080/15563650.2020.1785488. Epub 2020 Jul 9.

引用本文的文献

1
Geographical Differences in Self-Reported Past 12-Month Drug Use: Results from the NDEWS Rapid Street Reporting, 2021-2023.
Subst Use Misuse. 2025;60(11):1678-1689. doi: 10.1080/10826084.2025.2511242. Epub 2025 Jun 5.

本文引用的文献

1
Substance use prevalence, patterns, and correlates in transgender and gender diverse youth: A scoping review.
Drug Alcohol Depend. 2023 Sep 1;250:110880. doi: 10.1016/j.drugalcdep.2023.110880. Epub 2023 Jul 13.
2
Agreement between self-reported illicit drug use and biological samples: a systematic review and meta-analysis.
Addiction. 2023 Sep;118(9):1624-1648. doi: 10.1111/add.16200. Epub 2023 May 4.
3
When Substance Use Is Underreported: Comparing Self-Reports and Hair Toxicology in an Urban Cohort of Young Adults.
J Am Acad Child Adolesc Psychiatry. 2023 Jul;62(7):791-804. doi: 10.1016/j.jaac.2022.11.011. Epub 2023 Jan 31.
4
Reliability of a Rapid Screener for an Intercept Survey about Drug Use.
Subst Use Misuse. 2021;56(12):1831-1836. doi: 10.1080/10826084.2021.1954029. Epub 2021 Jul 27.
5
When national drug surveys "take too long": An examination of who is at risk for survey fatigue.
Drug Alcohol Depend. 2021 Aug 1;225:108769. doi: 10.1016/j.drugalcdep.2021.108769. Epub 2021 May 21.
6
Introducing NIDA's New National Drug Early Warning System.
Drug Alcohol Depend. 2020 Dec 1;217:108286. doi: 10.1016/j.drugalcdep.2020.108286. Epub 2020 Sep 14.
7
Prevalence and correlates of substance use among transgender adults: A systematic review.
Addict Behav. 2020 Dec;111:106544. doi: 10.1016/j.addbeh.2020.106544. Epub 2020 Jul 9.
8
Underreporting of drug use among electronic dance music party attendees.
Clin Toxicol (Phila). 2021 Mar;59(3):185-192. doi: 10.1080/15563650.2020.1785488. Epub 2020 Jul 9.
9
Development of a culturally informed protocol for hair cortisol sampling in Black women.
Public Health Nurs. 2019 Nov;36(6):872-879. doi: 10.1111/phn.12668. Epub 2019 Sep 30.
10
Barriers to accurately assessing prescription opioid misuse on surveys.
Am J Drug Alcohol Abuse. 2019;45(2):117-123. doi: 10.1080/00952990.2018.1521826. Epub 2018 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验