Faculty of Chemistry, Department of Analytical Chemistry, University of Vienna, Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria.
Proteomics Program, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
Mol Cell Proteomics. 2024 May;23(5):100754. doi: 10.1016/j.mcpro.2024.100754. Epub 2024 Mar 27.
Improving coverage, robustness, and sensitivity is crucial for routine phosphoproteomics analysis by single-shot liquid chromatography-tandem mass spectrometry (LC-MS/MS) from minimal peptide inputs. Here, we systematically optimized key experimental parameters for automated on-bead phosphoproteomics sample preparation with a focus on low-input samples. Assessing the number of identified phosphopeptides, enrichment efficiency, site localization scores, and relative enrichment of multiply-phosphorylated peptides pinpointed critical variables influencing the resulting phosphoproteome. Optimizing glycolic acid concentration in the loading buffer, percentage of ammonium hydroxide in the elution buffer, peptide-to-beads ratio, binding time, sample, and loading buffer volumes allowed us to confidently identify >16,000 phosphopeptides in half-an-hour LC-MS/MS on an Orbitrap Exploris 480 using 30 μg of peptides as starting material. Furthermore, we evaluated how sequential enrichment can boost phosphoproteome coverage and showed that pooling fractions into a single LC-MS/MS analysis increased the depth. We also present an alternative phosphopeptide enrichment strategy based on stepwise addition of beads thereby boosting phosphoproteome coverage by 20%. Finally, we applied our optimized strategy to evaluate phosphoproteome depth with the Orbitrap Astral MS using a cell dilution series and were able to identify >32,000 phosphopeptides from 0.5 million HeLa cells in half-an-hour LC-MS/MS using narrow-window data-independent acquisition (nDIA).
通过单次液相色谱-串联质谱 (LC-MS/MS) 从最少的肽输入量进行常规磷酸化蛋白质组学分析,提高覆盖率、稳健性和灵敏度至关重要。在这里,我们系统地优化了关键的实验参数,用于自动化在珠上进行磷酸化蛋白质组学样品制备,重点是低输入样品。评估鉴定的磷酸肽数量、富集效率、位点定位分数和多磷酸化肽的相对富集,确定了影响磷酸蛋白质组的关键变量。优化加载缓冲液中的乙二醇酸浓度、洗脱缓冲液中的氨水溶液百分比、肽与珠的比例、结合时间、样品和加载缓冲液体积,使我们能够在使用 30 μg 起始肽的情况下,使用 Orbitrap Exploris 480 在半小时的 LC-MS/MS 中可靠地鉴定出 >16000 个磷酸肽。此外,我们评估了顺序富集如何提高磷酸蛋白质组的覆盖率,并表明将馏分合并到单个 LC-MS/MS 分析中可以增加深度。我们还提出了一种基于逐步添加珠子的替代磷酸肽富集策略,从而将磷酸蛋白质组的覆盖率提高了 20%。最后,我们应用优化的策略,使用 Orbitrap Astral MS 通过细胞稀释系列来评估磷酸蛋白质组的深度,并且能够在半小时的 LC-MS/MS 中从 0.5 百万个 HeLa 细胞中鉴定出 >32000 个磷酸肽,使用窄窗口数据非依赖性采集 (nDIA)。