Suppr超能文献

细胞命运决策图揭示了人类发育新皮层中大量绕过中间祖细胞的直接神经发生。

A cell fate decision map reveals abundant direct neurogenesis bypassing intermediate progenitors in the human developing neocortex.

机构信息

Institut Curie, PSL Research University, CNRS UMR144, Paris, France.

Sorbonne Université, Ecole Doctorale complexité du vivant, Paris, France.

出版信息

Nat Cell Biol. 2024 May;26(5):698-709. doi: 10.1038/s41556-024-01393-z. Epub 2024 Mar 28.

Abstract

The human neocortex has undergone strong evolutionary expansion, largely due to an increased progenitor population, the basal radial glial cells. These cells are responsible for the production of a diversity of cell types, but the successive cell fate decisions taken by individual progenitors remain unknown. Here we developed a semi-automated live/fixed correlative imaging method to map basal radial glial cell division modes in early fetal tissue and cerebral organoids. Through the live analysis of hundreds of dividing progenitors, we show that basal radial glial cells undergo abundant symmetric amplifying divisions, and frequent self-consuming direct neurogenic divisions, bypassing intermediate progenitors. These direct neurogenic divisions are more abundant in the upper part of the subventricular zone. We furthermore demonstrate asymmetric Notch activation in the self-renewing daughter cells, independently of basal fibre inheritance. Our results reveal a remarkable conservation of fate decisions in cerebral organoids, supporting their value as models of early human neurogenesis.

摘要

人类新皮层经历了强烈的进化扩张,主要归因于祖细胞群体(基底放射状胶质细胞)的增加。这些细胞负责产生多种细胞类型,但单个祖细胞所做出的连续细胞命运决定仍不清楚。在这里,我们开发了一种半自动的活体/固定关联成像方法,以绘制早期胎儿组织和脑类器官中基底放射状胶质细胞的分裂模式。通过对数百个正在分裂的祖细胞进行活体分析,我们发现基底放射状胶质细胞经历了丰富的对称扩增分裂,以及频繁的自我消耗的直接神经发生分裂,绕过中间祖细胞。这些直接神经发生分裂在上部脑室下区更为丰富。我们进一步证明,自我更新的子细胞中存在不对称的 Notch 激活,与基底纤维的遗传无关。我们的结果揭示了脑类器官中命运决定的显著保守性,支持了它们作为早期人类神经发生模型的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23d3/11098750/cc1b5197bced/41556_2024_1393_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验