Suppr超能文献

用于电化学CO还原的泡沫铜中块状和表面氧化物演变的动力学

Dynamics of bulk and surface oxide evolution in copper foams for electrochemical CO reduction.

作者信息

Yang Fan, Jiang Shan, Liu Si, Beyer Paul, Mebs Stefan, Haumann Michael, Roth Christina, Dau Holger

机构信息

Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany.

Electrochemical Process Engineering, Universität Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany.

出版信息

Commun Chem. 2024 Mar 28;7(1):66. doi: 10.1038/s42004-024-01151-0.

Abstract

Oxide-derived copper (OD-Cu) materials exhibit extraordinary catalytic activities in the electrochemical carbon dioxide reduction reaction (CORR), which likely relates to non-metallic material constituents formed in transitions between the oxidized and the reduced material. In time-resolved operando experiment, we track the structural dynamics of copper oxide reduction and its re-formation separately in the bulk of the catalyst material and at its surface using X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy. Surface-species transformations progress within seconds whereas the subsurface (bulk) processes unfold within minutes. Evidence is presented that electroreduction of OD-Cu foams results in kinetic trapping of subsurface (bulk) oxide species, especially for cycling between strongly oxidizing and reducing potentials. Specific reduction-oxidation protocols may optimize formation of bulk-oxide species and thereby catalytic properties. Together with the Raman-detected surface-adsorbed *OH and C-containing species, the oxide species could collectively facilitate *CO adsorption, resulting an enhanced selectivity towards valuable C products during CORR.

摘要

氧化物衍生铜(OD-Cu)材料在电化学二氧化碳还原反应(CORR)中表现出非凡的催化活性,这可能与氧化态和还原态材料转变过程中形成的非金属材料成分有关。在时间分辨的原位实验中,我们使用X射线吸收光谱和表面增强拉曼光谱分别跟踪催化剂材料本体及其表面上氧化铜还原及其再形成的结构动力学。表面物种的转变在几秒钟内完成,而次表面(本体)过程在几分钟内展开。有证据表明,OD-Cu泡沫的电还原导致次表面(本体)氧化物物种的动力学捕获,特别是在强氧化和还原电位之间循环时。特定的还原-氧化方案可以优化本体氧化物物种的形成,从而优化催化性能。与拉曼检测到的表面吸附的OH和含C物种一起,氧化物物种可以共同促进CO吸附,从而在CORR期间提高对有价值C产物的选择性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84a4/10978924/13db5f59954a/42004_2024_1151_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验