Suppr超能文献

原位时间分辨X射线吸收光谱揭示了实现高选择性CO还原的化学本质。

Operando time-resolved X-ray absorption spectroscopy reveals the chemical nature enabling highly selective CO reduction.

作者信息

Lin Sheng-Chih, Chang Chun-Chih, Chiu Shih-Yun, Pai Hsiao-Tien, Liao Tzu-Yu, Hsu Chia-Shuo, Chiang Wei-Hung, Tsai Ming-Kang, Chen Hao Ming

机构信息

Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.

Department of Chemical and Material Engineering, Chinese Culture University, Taipei, 11114, Taiwan.

出版信息

Nat Commun. 2020 Jul 14;11(1):3525. doi: 10.1038/s41467-020-17231-3.

Abstract

Copper electrocatalysts have been shown to selectively reduce carbon dioxide to hydrocarbons. Nevertheless, the absence of a systematic study based on time-resolved spectroscopy renders the functional agent-either metallic or oxidative Copper-for the selectivity still undecidable. Herein, we develop an operando seconds-resolved X-ray absorption spectroscopy to uncover the chemical state evolution of working catalysts. An oxide-derived Copper electrocatalyst is employed as a model catalyst to offer scientific insights into the roles metal states serve in carbon dioxide reduction reaction (CORR). Using a potential switching approach, the model catalyst can achieve a steady chemical state of half-Cu(0)-and-half-Cu(I) and selectively produce asymmetric C products - CHOH. Furthermore, a theoretical analysis reveals that a surface composed of Cu-Cu(I) ensembles can have dual carbon monoxide molecules coupled asymmetrically, which potentially enhances the catalyst's CORR product selectivity toward C products. Our results offer understandings of the fundamental chemical states and insights to the establishment of selective CORR.

摘要

铜电催化剂已被证明能选择性地将二氧化碳还原为碳氢化合物。然而,缺乏基于时间分辨光谱的系统研究使得对于选择性的功能剂(金属铜或氧化态铜)仍无法确定。在此,我们开发了一种原位秒级分辨X射线吸收光谱技术,以揭示工作催化剂的化学状态演变。采用氧化物衍生的铜电催化剂作为模型催化剂,以深入了解金属态在二氧化碳还原反应(CORR)中所起的作用。通过电位切换方法,该模型催化剂可实现半Cu(0)和半Cu(I)的稳定化学状态,并选择性地产生不对称C产物——CHOH。此外,理论分析表明,由Cu-Cu(I)组合构成的表面可使两个一氧化碳分子不对称耦合,这可能会提高催化剂对C产物的CORR产物选择性。我们的结果有助于理解基本化学状态,并为建立选择性CORR提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9721/7360608/f2c0e7402f08/41467_2020_17231_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验