Suppr超能文献

基于深度卷积神经网络的膝关节专用感兴趣区多参数定量超短回波时间(UTE)磁共振成像。

Deep Convolutional Neural Network for Dedicated Regions-of-Interest Based Multi-Parameter Quantitative Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of the Knee Joint.

机构信息

Department of Radiology, University of California, 9452 Medical Center Dr, San Diego, San Diego, CA, 92037, USA.

Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.

出版信息

J Imaging Inform Med. 2024 Oct;37(5):2126-2134. doi: 10.1007/s10278-024-01089-8. Epub 2024 Mar 28.

Abstract

We proposed an end-to-end deep learning convolutional neural network (DCNN) for region-of-interest based multi-parameter quantification (RMQ-Net) to accelerate quantitative ultrashort echo time (UTE) MRI of the knee joint with automatic multi-tissue segmentation and relaxometry mapping. The study involved UTE-based T1 (UTE-T1) and Adiabatic T1ρ (UTE-AdiabT1ρ) mapping of the knee joint of 65 human subjects, including 20 normal controls, 29 with doubtful-minimal osteoarthritis (OA), and 16 with moderate-severe OA. Comparison studies were performed on UTE-T1 and UTE-AdiabT1ρ measurements using 100%, 43%, 26%, and 18% UTE MRI data as the inputs and the effects on the prediction quality of the RMQ-Net. The RMQ-net was modified and retrained accordingly with different combinations of inputs. Both ROI-based and voxel-based Pearson correlation analyses were performed. High Pearson correlation coefficients were achieved between the RMQ-Net predicted UTE-T1 and UTE-AdiabT1ρ results and the ground truth for segmented cartilage with acceleration factors ranging from 2.3 to 5.7. With an acceleration factor of 5.7, the Pearson r-value achieved 0.908 (ROI-based) and 0.945 (voxel-based) for UTE-T1, and 0.733 (ROI-based) and 0.895 (voxel-based) for UTE-AdiabT1ρ, correspondingly. The results demonstrated that RMQ-net can significantly accelerate quantitative UTE imaging with automated segmentation of articular cartilage in the knee joint.

摘要

我们提出了一种基于深度学习卷积神经网络(DCNN)的端到端方法,用于基于感兴趣区域的多参数定量(RMQ-Net),以加速膝关节的定量超短回波时间(UTE)MRI,实现自动多组织分割和弛豫率映射。该研究涉及 65 名人类受试者的膝关节基于 UTE 的 T1(UTE-T1)和绝热 T1ρ(UTE-AdiabT1ρ)映射,包括 20 名正常对照者、29 名可疑-轻度骨关节炎(OA)患者和 16 名中重度 OA 患者。使用 100%、43%、26%和 18%的 UTE MRI 数据作为输入,对 UTE-T1 和 UTE-AdiabT1ρ 测量值进行了比较研究,并研究了这些输入对 RMQ-Net 预测质量的影响。相应地对 RMQ-Net 进行了修改和重新训练,以适应不同的输入组合。进行了基于 ROI 和基于体素的 Pearson 相关分析。在加速因子为 2.3 到 5.7 时,RMQ-Net 预测的 UTE-T1 和 UTE-AdiabT1ρ 结果与分割软骨的真实值之间实现了高度的 Pearson 相关系数。在加速因子为 5.7 时,基于 ROI 的 Pearson r 值达到 0.908(用于 UTE-T1)和 0.945(用于 UTE-AdiabT1ρ),基于体素的 Pearson r 值达到 0.733(用于 UTE-T1)和 0.895(用于 UTE-AdiabT1ρ)。结果表明,RMQ-Net 可以显著加速膝关节定量 UTE 成像,同时自动分割关节软骨。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验