文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多任务深度学习在医学图像计算和分析中的应用综述。

Multi-task deep learning for medical image computing and analysis: A review.

机构信息

Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.

School of Computer Science, The University of Sydney, Sydney, NSW, 2008, Australia.

出版信息

Comput Biol Med. 2023 Feb;153:106496. doi: 10.1016/j.compbiomed.2022.106496. Epub 2022 Dec 28.


DOI:10.1016/j.compbiomed.2022.106496
PMID:36634599
Abstract

The renaissance of deep learning has provided promising solutions to various tasks. While conventional deep learning models are constructed for a single specific task, multi-task deep learning (MTDL) that is capable to simultaneously accomplish at least two tasks has attracted research attention. MTDL is a joint learning paradigm that harnesses the inherent correlation of multiple related tasks to achieve reciprocal benefits in improving performance, enhancing generalizability, and reducing the overall computational cost. This review focuses on the advanced applications of MTDL for medical image computing and analysis. We first summarize four popular MTDL network architectures (i.e., cascaded, parallel, interacted, and hybrid). Then, we review the representative MTDL-based networks for eight application areas, including the brain, eye, chest, cardiac, abdomen, musculoskeletal, pathology, and other human body regions. While MTDL-based medical image processing has been flourishing and demonstrating outstanding performance in many tasks, in the meanwhile, there are performance gaps in some tasks, and accordingly we perceive the open challenges and the perspective trends. For instance, in the 2018 Ischemic Stroke Lesion Segmentation challenge, the reported top dice score of 0.51 and top recall of 0.55 achieved by the cascaded MTDL model indicate further research efforts in high demand to escalate the performance of current models.

摘要

深度学习的复兴为各种任务提供了有前景的解决方案。虽然传统的深度学习模型是为单一特定任务构建的,但同时能够完成至少两个任务的多任务深度学习(MTDL)已引起研究关注。MTDL 是一种联合学习范式,利用多个相关任务之间的固有相关性,在提高性能、增强通用性和降低整体计算成本方面实现互惠互利。

本篇综述重点介绍 MTDL 在医学图像计算和分析中的高级应用。我们首先总结了四种流行的 MTDL 网络架构(即级联、并行、交互和混合)。然后,我们回顾了基于 MTDL 的网络在八个应用领域的代表性应用,包括大脑、眼睛、胸部、心脏、腹部、骨骼肌肉、病理学和其他人体部位。虽然基于 MTDL 的医学图像处理蓬勃发展,并在许多任务中表现出色,但在某些任务中仍存在性能差距,因此我们感知到了开放的挑战和未来的趋势。例如,在 2018 年的缺血性脑卒中病变分割挑战赛中,级联 MTDL 模型报告的最高骰子分数为 0.51,最高召回率为 0.55,这表明需要进一步研究努力来提高当前模型的性能。

相似文献

[1]
Multi-task deep learning for medical image computing and analysis: A review.

Comput Biol Med. 2023-2

[2]
A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.

Med Phys. 2023-3

[3]
Review on Deep Learning Methodologies in Medical Image Restoration and Segmentation.

Curr Med Imaging. 2023

[4]
A multi-task deep learning model for EGFR genotyping prediction and GTV segmentation of brain metastasis.

J Transl Med. 2023-11-7

[5]
Deep Learning in Microscopy Image Analysis: A Survey.

IEEE Trans Neural Netw Learn Syst. 2017-11-22

[6]
Deep learning for image-based liver analysis - A comprehensive review focusing on malignant lesions.

Artif Intell Med. 2022-8

[7]
Propagating Uncertainty Across Cascaded Medical Imaging Tasks for Improved Deep Learning Inference.

IEEE Trans Med Imaging. 2022-2

[8]
Cross-dimensional transfer learning in medical image segmentation with deep learning.

Med Image Anal. 2023-8

[9]
Image Segmentation Using Deep Learning: A Survey.

IEEE Trans Pattern Anal Mach Intell. 2022-7

[10]
Pathology Image Analysis Using Segmentation Deep Learning Algorithms.

Am J Pathol. 2019-6-11

引用本文的文献

[1]
Diagnostic performance of dual-layer spectral CT Radiomics and deep learning for differentiating osteoblastic bone metastases from bone islands.

Eur J Radiol Open. 2025-8-20

[2]
An attention-based fuzzy CNN-LTSM network for visual object recognition from fMRI images.

J Comput Neurosci. 2025-9

[3]
The Robust Vessel Segmentation and Centerline Extraction: One-Stage Deep Learning Approach.

J Imaging. 2025-6-26

[4]
MTMedFormer: multi-task vision transformer for medical imaging with federated learning.

Med Biol Eng Comput. 2025-7-8

[5]
Multi-task deep learning framework for enhancing Mayo endoscopic score classification in ulcerative colitis.

Digit Health. 2025-7-3

[6]
Risk Classification of Low-Resolution Whole-Slide Thumbnail Images by Multi-dimensional Feature Reconstruction with Multi-task Deep Learning Network Helps Prioritize Pathology Case Registration.

J Imaging Inform Med. 2025-6-25

[7]
Deep learning for MRI-based acute and subacute ischaemic stroke lesion segmentation-a systematic review, meta-analysis, and pilot evaluation of key results.

Front Med Technol. 2025-6-10

[8]
GLAPAL-H: Global, Local, And Parts Aware Learner for Hydrocephalus Infection Diagnosis in Low-Field MRI.

IEEE Trans Biomed Eng. 2025-6-9

[9]
GLAPAL-H: Global, Local, And Parts Aware Learner for Hydrocephalus Infection Diagnosis in Low-Field MRI.

medRxiv. 2025-6-6

[10]
Explainable deep learning for age and gender estimation in dental CBCT scans using attention mechanisms and multi task learning.

Sci Rep. 2025-5-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索