Nie Xinyu, Shi Yonggang
USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA.
Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA.
Med Image Comput Comput Assist Interv. 2023 Oct;14227:46-55. doi: 10.1007/978-3-031-43993-3_5. Epub 2023 Oct 1.
The fiber orientation distribution function (FOD) is an advanced model for high angular resolution diffusion MRI representing complex fiber geometry. However, the complicated mathematical structures of the FOD function pose challenges for FOD image processing tasks such as interpolation, which plays a critical role in the propagation of fiber tracts in tractography. In FOD-based tractography, linear interpolation is commonly used for numerical efficiency, but it is prone to generate false artificial information, leading to anatomically incorrect fiber tracts. To overcome this difficulty, we propose a flowbased and geometrically consistent interpolation framework that considers peak-wise rotations of FODs within the neighborhood of each location. Our method decomposes a FOD function into multiple components and uses a smooth vector field to model the flows of each peak in its neighborhood. To generate the interpolated result along the flow of each vector field, we develop a closed-form and efficient method to rotate FOD peaks in neighboring voxels and realize geometrically consistent interpolation of FOD components. By combining the interpolation results from each peak, we obtain the final interpolation of FODs. Experimental results on Human Connectome Project (HCP) data demonstrate that our method produces anatomically more meaningful FOD interpolations and significantly enhances tractography performance.
纤维取向分布函数(FOD)是用于高角分辨率扩散磁共振成像的一种先进模型,可呈现复杂的纤维几何结构。然而,FOD函数复杂的数学结构给诸如插值等FOD图像处理任务带来了挑战,而插值在纤维束成像中纤维束的传播过程中起着关键作用。在基于FOD的纤维束成像中,为了提高数值效率通常使用线性插值,但它容易产生虚假的人工信息,导致纤维束在解剖学上出现错误。为克服这一困难,我们提出了一种基于流且几何一致的插值框架,该框架考虑了每个位置邻域内FOD的逐峰旋转。我们的方法将FOD函数分解为多个分量,并使用平滑向量场对其邻域内每个峰的流进行建模。为了沿着每个向量场的流生成插值结果,我们开发了一种闭式且高效的方法来旋转相邻体素中的FOD峰,并实现FOD分量的几何一致插值。通过组合每个峰的插值结果,我们得到FOD的最终插值。在人类连接组计划(HCP)数据上的实验结果表明,我们的方法产生的FOD插值在解剖学上更有意义,并显著提高了纤维束成像性能。