Suppr超能文献

基于流的纤维取向分布函数几何插值

Flow-based Geometric Interpolation of Fiber Orientation Distribution Functions.

作者信息

Nie Xinyu, Shi Yonggang

机构信息

USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA.

Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Med Image Comput Comput Assist Interv. 2023 Oct;14227:46-55. doi: 10.1007/978-3-031-43993-3_5. Epub 2023 Oct 1.

Abstract

The fiber orientation distribution function (FOD) is an advanced model for high angular resolution diffusion MRI representing complex fiber geometry. However, the complicated mathematical structures of the FOD function pose challenges for FOD image processing tasks such as interpolation, which plays a critical role in the propagation of fiber tracts in tractography. In FOD-based tractography, linear interpolation is commonly used for numerical efficiency, but it is prone to generate false artificial information, leading to anatomically incorrect fiber tracts. To overcome this difficulty, we propose a flowbased and geometrically consistent interpolation framework that considers peak-wise rotations of FODs within the neighborhood of each location. Our method decomposes a FOD function into multiple components and uses a smooth vector field to model the flows of each peak in its neighborhood. To generate the interpolated result along the flow of each vector field, we develop a closed-form and efficient method to rotate FOD peaks in neighboring voxels and realize geometrically consistent interpolation of FOD components. By combining the interpolation results from each peak, we obtain the final interpolation of FODs. Experimental results on Human Connectome Project (HCP) data demonstrate that our method produces anatomically more meaningful FOD interpolations and significantly enhances tractography performance.

摘要

纤维取向分布函数(FOD)是用于高角分辨率扩散磁共振成像的一种先进模型,可呈现复杂的纤维几何结构。然而,FOD函数复杂的数学结构给诸如插值等FOD图像处理任务带来了挑战,而插值在纤维束成像中纤维束的传播过程中起着关键作用。在基于FOD的纤维束成像中,为了提高数值效率通常使用线性插值,但它容易产生虚假的人工信息,导致纤维束在解剖学上出现错误。为克服这一困难,我们提出了一种基于流且几何一致的插值框架,该框架考虑了每个位置邻域内FOD的逐峰旋转。我们的方法将FOD函数分解为多个分量,并使用平滑向量场对其邻域内每个峰的流进行建模。为了沿着每个向量场的流生成插值结果,我们开发了一种闭式且高效的方法来旋转相邻体素中的FOD峰,并实现FOD分量的几何一致插值。通过组合每个峰的插值结果,我们得到FOD的最终插值。在人类连接组计划(HCP)数据上的实验结果表明,我们的方法产生的FOD插值在解剖学上更有意义,并显著提高了纤维束成像性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9b1/10978007/12b35de1e9f6/nihms-1930490-f0001.jpg

相似文献

1
Flow-based Geometric Interpolation of Fiber Orientation Distribution Functions.基于流的纤维取向分布函数几何插值
Med Image Comput Comput Assist Interv. 2023 Oct;14227:46-55. doi: 10.1007/978-3-031-43993-3_5. Epub 2023 Oct 1.
8
Topographic Filtering of Tractograms as Vector Field Flows.作为矢量场流的纤维束图地形滤波
Med Image Comput Comput Assist Interv. 2019;11766:564-572. Epub 2019 Oct 10.
10
FOD Restoration for Enhanced Mapping of White Matter Lesion Connectivity.用于增强白质病变连通性映射的纤维束定向分布恢复技术
Med Image Comput Comput Assist Interv. 2017 Sep;10433:584-592. doi: 10.1007/978-3-319-66182-7_67. Epub 2017 Sep 4.

本文引用的文献

1
Topographic Filtering of Tractograms as Vector Field Flows.作为矢量场流的纤维束图地形滤波
Med Image Comput Comput Assist Interv. 2019;11766:564-572. Epub 2019 Oct 10.
2
Parallel Transport Tractography.并行传输束追踪技术。
IEEE Trans Med Imaging. 2021 Feb;40(2):635-647. doi: 10.1109/TMI.2020.3034038. Epub 2021 Feb 2.
3
Tracking and validation techniques for topographically organized tractography.拓扑组织束追踪的跟踪和验证技术。
Neuroimage. 2018 Nov 1;181:64-84. doi: 10.1016/j.neuroimage.2018.06.071. Epub 2018 Jul 2.
4
Clarifying Human White Matter.阐明人类的白质。
Annu Rev Neurosci. 2016 Jul 8;39:103-28. doi: 10.1146/annurev-neuro-070815-013815. Epub 2016 Apr 1.
8
Topographic organization in the brain: searching for general principles.大脑的拓扑组织:寻找普遍原则。
Trends Cogn Sci. 2014 Jul;18(7):351-63. doi: 10.1016/j.tics.2014.03.008. Epub 2014 May 23.
10
The topographic connectome.拓扑连接组
Curr Opin Neurobiol. 2013 Apr;23(2):207-15. doi: 10.1016/j.conb.2012.12.004. Epub 2013 Jan 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验