Department of Pharmacology, Case Western Reserve Universitygrid.67105.35 School of Medicine, Cleveland, Ohio, USA.
Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA.
mBio. 2021 Feb 22;13(1):e0373221. doi: 10.1128/mbio.03732-21. Epub 2022 Feb 1.
Antibiotic resistance among bacterial pathogens continues to pose a serious global health threat. Multidrug-resistant (MDR) strains of the Gram-negative organism Acinetobacter baumannii utilize a number of resistance determinants to evade current antibiotics. One of the major resistance mechanisms employed by these pathogens is the use of multidrug efflux pumps. These pumps extrude xenobiotics directly out of bacterial cells, resulting in treatment failures when common antibiotics are administered. Here, the structure of the novel tetracycline antibiotic TP-6076, bound to both the cinetobacter rug fflux pump AdeJ and the ribosome from Acinetobacter baumannii, using single-particle cryo-electron microscopy (cryo-EM), is elucidated. In this work, the structure of the AdeJ-TP-6076 complex is solved, and we show that AdeJ utilizes a network of hydrophobic interactions to recognize this fluorocycline. Concomitant with this, we elucidate three structures of TP-6076 bound to the A. baumannii ribosome and determine that its binding is stabilized largely by electrostatic interactions. We then compare the differences in binding modes between TP-6076 and the related tetracycline antibiotic eravacycline in both targets. These differences suggest that modifications to the tetracycline core may be able to alter AdeJ binding while maintaining interactions with the ribosome. Together, this work highlights how different mechanisms are used to stabilize the binding of tetracycline-based compounds to unique bacterial targets and provides guidance for the future clinical development of tetracycline antibiotics. Treatment of antibiotic-resistant organisms such as A. baumannii represents an ongoing issue for modern medicine. The multidrug efflux pump AdeJ serves as a major resistance determinant in A. baumannii through its action of extruding antibiotics from the cell. In this work, we use cryo-EM to show how AdeJ recognizes the experimental tetracycline antibiotic TP-6076 and prevents this drug from interacting with the A. baumannii ribosome. Since AdeJ and the ribosome use different binding modes to stabilize interactions with TP-6076, exploiting these differences may guide future drug development for combating antibiotic-resistant A. baumannii and potentially other strains of MDR bacteria.
细菌病原体的抗生素耐药性继续构成严重的全球健康威胁。革兰氏阴性生物体鲍曼不动杆菌的多药耐药 (MDR) 菌株利用多种耐药决定因素来逃避当前的抗生素。这些病原体使用的主要耐药机制之一是使用多药外排泵。这些泵将外源性物质直接从细菌细胞中排出,导致当给予常用抗生素时治疗失败。在这里,使用单颗粒冷冻电子显微镜 (cryo-EM) 阐明了新型四环素抗生素 TP-6076 与鲍曼不动杆菌的 cinetobacter rug fflux 泵 AdeJ 和核糖体结合的结构。在这项工作中,解决了 AdeJ-TP-6076 复合物的结构,我们表明 AdeJ 利用疏水相互作用网络来识别这种氟环素。与此伴随的是,我们阐明了 TP-6076 与 A. baumannii 核糖体结合的三种结构,并确定其结合主要通过静电相互作用稳定。然后,我们比较了 TP-6076 在这两个靶标中与相关四环素抗生素 eravacycline 的结合模式差异。这些差异表明,四环素核心的修饰可以改变 AdeJ 的结合,同时保持与核糖体的相互作用。总的来说,这项工作强调了不同的机制如何用于稳定基于四环素的化合物与独特的细菌靶标的结合,并为未来四环素抗生素的临床开发提供了指导。治疗抗生素耐药菌如鲍曼不动杆菌是现代医学面临的一个持续问题。多药外排泵 AdeJ 通过将抗生素从细胞中排出,成为鲍曼不动杆菌的主要耐药决定因素。在这项工作中,我们使用 cryo-EM 显示 AdeJ 如何识别实验性四环素抗生素 TP-6076 并防止该药物与 A. baumannii 核糖体相互作用。由于 AdeJ 和核糖体使用不同的结合模式来稳定与 TP-6076 的相互作用,利用这些差异可能指导未来针对抗生素耐药性鲍曼不动杆菌和潜在其他 MDR 菌株的药物开发。