Facultad de Matemáticas y Facultad de Ingeniería, Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
Mount Holyoke College, Department of Mathematics and Statistics, South Hadley, MA 01075.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2316616121. doi: 10.1073/pnas.2316616121. Epub 2024 Mar 28.
Motivated by the implementation of a SARS-Cov-2 sewer surveillance system in Chile during the COVID-19 pandemic, we propose a set of mathematical and algorithmic tools that aim to identify the location of an outbreak under uncertainty in the network structure. Given an upper bound on the number of samples we can take on any given day, our framework allows us to detect an unknown infected node by adaptively sampling different network nodes on different days. Crucially, despite the uncertainty of the network, the method allows univocal detection of the infected node, albeit at an extra cost in time. This framework relies on a specific and well-chosen strategy that defines new nodes to test sequentially, with a heuristic that balances the granularity of the information obtained from the samples. We extensively tested our model in real and synthetic networks, showing that the uncertainty of the underlying graph only incurs a limited increase in the number of iterations, indicating that the methodology is applicable in practice.
受 COVID-19 大流行期间智利实施 SARS-CoV-2 下水道监测系统的启发,我们提出了一套数学和算法工具,旨在在网络结构存在不确定性的情况下确定疫情爆发的位置。在给定的任何一天,我们可以采集样本的数量有一个上限,我们的框架允许我们通过在不同的日子自适应地采集不同的网络节点来检测未知的感染节点。至关重要的是,尽管网络存在不确定性,但该方法允许唯一地检测到感染节点,尽管会额外增加时间成本。该框架依赖于一种特定且精心选择的策略,该策略定义了要依次测试的新节点,并使用一种启发式方法来平衡从样本中获得的信息的粒度。我们在真实和合成网络中对我们的模型进行了广泛的测试,结果表明,底层图的不确定性仅会导致迭代次数的有限增加,这表明该方法在实际中是适用的。