Suppr超能文献

在污水管网中安置传感器:一种精确定位新冠病毒新病例的系统。

Placing sensors in sewer networks: A system to pinpoint new cases of coronavirus.

机构信息

Civil Engineering Department, York University, Toronto, Canada.

Rotman School of Management, University of Toronto, Toronto, Canada.

出版信息

PLoS One. 2021 Apr 8;16(4):e0248893. doi: 10.1371/journal.pone.0248893. eCollection 2021.

Abstract

We consider a proposed system that would place sensors in a number of wastewater manholes in a community in order to detect genetic remnants of SARS-Cov-2 found in the excreted stool of infected persons. These sensors would continually monitor the manhole's wastewater, and whenever virus remnants are detected, transmit an alert signal. In a recent paper, we described two new algorithms, each sequentially opening and testing successive manholes for genetic remnants, each algorithm homing in on a neighborhood where the infected person or persons are located. This paper extends that work in six important ways: (1) we introduce the concept of in-manhole sensors, as these sensors will reduce the number of manholes requiring on-site testing; (2) we present a realistic tree network depicting the topology of the sewer pipeline network; (3) for simulations, we present a method to create random tree networks exhibiting key attributes of a given community; (4) using the simulations, we empirically demonstrate that the mean and median number of manholes to be opened in a search follows a well-known logarithmic function; (5) we develop procedures for determining the number of sensors to deploy; (6) we formulate the sensor location problem as an integer nonlinear optimization and develop heuristics to solve it. Our sensor-manhole system, to be implemented, would require at least three additional steps in R&D: (a) an accurate, inexpensive and fast SARS-Cov-2 genetic-remnants test that can be done at the manhole; (b) design, test and manufacture of the sensors; (c) in-the-field testing and fine tuning of an implemented system.

摘要

我们考虑了一个提议的系统,该系统将在社区中的多个污水检查井中放置传感器,以检测在感染患者排泄物中发现的 SARS-CoV-2 的遗传残留物。这些传感器将持续监测检查井的污水,并且只要检测到病毒残留物,就会发出警报信号。在最近的一篇论文中,我们描述了两种新算法,每种算法都依次打开并测试连续的检查井中的遗传残留物,每个算法都能确定感染者所在的区域。本文在六个重要方面扩展了这项工作:(1)我们引入了井内传感器的概念,因为这些传感器将减少需要现场测试的检查井数量;(2)我们提出了一个现实的树状网络,描绘了污水管道网络的拓扑结构;(3)对于模拟,我们提出了一种创建随机树网络的方法,该网络展示了给定社区的关键属性;(4)使用模拟,我们从经验上证明了在搜索中要打开的检查井的平均数量和中位数遵循一个众所周知的对数函数;(5)我们制定了部署传感器数量的程序;(6)我们将传感器位置问题表述为整数非线性优化问题,并开发了启发式算法来解决它。我们的传感器-检查井系统,如果要实施,至少需要在研发方面再进行三个步骤:(a)在检查井中进行准确、廉价和快速的 SARS-CoV-2 遗传残留物测试;(b)设计、测试和制造传感器;(c)对已实施系统进行现场测试和微调。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbcc/8031413/1c5aef5347f8/pone.0248893.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验