Suppr超能文献

介孔二氧化硅纳米颗粒的甘露糖基化修饰改变了 T24 膀胱癌细胞中 TLR4 的定位和 NF-κB 的易位。

MANNosylation of Mesoporous Silica Nanoparticles Modifies TLR4 Localization and NF-κB Translocation in T24 Bladder Cancer Cells.

机构信息

Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, Vienna, 1090, Austria.

Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria.

出版信息

Adv Healthc Mater. 2024 Jul;13(17):e2304150. doi: 10.1002/adhm.202304150. Epub 2024 Mar 30.

Abstract

D-mannose is widely used as non-antibiotic treatment for bacterial urinary tract infections. This application is based on a well-studied mechanism of binding to the type 1 bacterial pili and, therefore, blocking bacteria adhesion to the uroepithelial cells. To implement D-mannose into carrier systems, the mechanism of action of the sugar in the bladder environment is also relevant and requires investigation. Herein, two different MANNosylation strategies using mesoporous silica nanoparticles (MSNs) are described. The impact of different chemical linkers on bacterial adhesion and bladder cell response is studied via confocal microscopy imaging of the MSN interactions with the respective organisms. Cytotoxicity is assessed and the expression of Toll-like receptor 4 (TLR4) and caveolin-1 (CAV-1), in the presence or absence of simulated infection with bacterial lipopolysaccharide (LPS), is evaluated using the human urinary bladder cancer cell line T24. Further, localisation of the transcription factor NF-κB due to the MANNosylated materials is examined over time. The results show that MANNosylation modifies bacterial adhesion to the nanomaterials and significantly affects TLR4, caveolin-1, and NF-κB in bladder cells. These elements are essential components of the inflammatory cascade/pathogens response during urinary tract infections. These findings demonstrate that MANNosylation is a versatile tool to design hybrid nanocarriers for targeted biomedical applications.

摘要

D-甘露糖被广泛用作治疗细菌尿路感染的非抗生素治疗方法。这种应用基于一种经过充分研究的机制,即与 1 型细菌菌毛结合,从而阻止细菌黏附在上皮细胞上。为了将 D-甘露糖应用于载体系统,还需要研究该糖在膀胱环境中的作用机制。本文描述了两种使用介孔硅纳米粒子(MSNs)的不同 MANNosylation 策略。通过共聚焦显微镜成像研究了不同化学连接物对细菌黏附以及膀胱细胞反应的影响,研究了 MSN 与相应生物体的相互作用。通过人膀胱癌细胞系 T24 评估了细胞毒性以及在存在或不存在细菌脂多糖(LPS)模拟感染的情况下 Toll 样受体 4(TLR4)和小窝蛋白-1(CAV-1)的表达。此外,还研究了由于 MANNosylated 材料而导致的转录因子 NF-κB 的定位随时间的变化。结果表明,MANNosylation 改变了细菌对纳米材料的黏附,并且显著影响了膀胱细胞中的 TLR4、 caveolin-1 和 NF-κB。这些元素是尿路感染期间炎症级联/病原体反应的重要组成部分。这些发现表明,MANNosylation 是设计用于靶向生物医学应用的混合纳米载体的多功能工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9a/11468387/953ca60777ce/ADHM-13-2304150-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验