Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
J Nanobiotechnology. 2024 Mar 30;22(1):139. doi: 10.1186/s12951-024-02406-7.
Alzheimer's disease (AD) is a neurodegenerative disorder with complex pathogenesis and effective clinical treatment strategies for this disease remain elusive. Interestingly, nanomedicines are under extensive investigation for AD management. Currently, existing redox molecules show highly bioactive property but suffer from instability and high production costs, limiting clinical application for neurological diseases. Compared with natural enzymes, artificial enzymes show high stability, long-lasting catalytic activity, and versatile enzyme-like properties. Further, the selectivity and performance of artificial enzymes can be modulated for neuroinflammation treatments through external stimuli. In this review, we focus on the latest developments of metal, metal oxide, carbon-based and polymer based nanozymes and their catalytic mechanisms. Recent developments in nanozymes for diagnosing and treating AD are emphasized, especially focusing on their potential to regulate pathogenic factors and target sites. Various applications of nanozymes with different stimuli-responsive features were discussed, particularly focusing on nanozymes for treating oxidative stress-related neurological diseases. Noninvasiveness and focused application to deep body regions makes ultrasound (US) an attractive trigger mechanism for nanomedicine. Since a complete cure for AD remains distant, this review outlines the potential of US responsive nanozymes to develop future therapeutic approaches for this chronic neurodegenerative disease and its emergence in AD management.
阿尔茨海默病(AD)是一种神经退行性疾病,其发病机制复杂,目前仍缺乏有效的临床治疗策略。有趣的是,纳米医学正在被广泛研究用于 AD 的治疗。目前,现有的氧化还原分子具有高度的生物活性,但存在不稳定性和高生产成本的问题,限制了其在神经疾病中的临床应用。与天然酶相比,人工酶具有高稳定性、持久的催化活性和多功能的酶样特性。此外,通过外部刺激可以调节人工酶的选择性和性能,用于神经炎症的治疗。在这篇综述中,我们重点介绍了金属、金属氧化物、基于碳和基于聚合物的纳米酶及其催化机制的最新进展。强调了纳米酶在诊断和治疗 AD 方面的最新进展,特别是它们在调节致病因素和靶点方面的潜力。讨论了具有不同刺激响应特性的纳米酶的各种应用,特别是用于治疗与氧化应激相关的神经退行性疾病的纳米酶。由于超声(US)具有非侵入性和对深部身体区域的针对性应用,因此它成为了纳米医学的一种有吸引力的触发机制。由于 AD 的完全治愈仍然遥不可及,因此,本篇综述概述了超声响应纳米酶在开发针对这种慢性神经退行性疾病的未来治疗方法及其在 AD 治疗中的应用的潜力。
J Nanobiotechnology. 2024-3-30
Acta Biomater. 2021-5
Biomater Sci. 2024-9-10
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-3
Acc Chem Res. 2020-7-21
J Mater Chem B. 2023-6-14
Colloids Surf B Biointerfaces. 2024-3
Chem Commun (Camb). 2020-9-29
Biomimetics (Basel). 2025-7-1
J Nanobiotechnology. 2023-9-7
World J Clin Cases. 2023-8-6
Biomater Sci. 2023-8-22
Biomedicines. 2023-6-18
Exploration (Beijing). 2022-7-13