文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米酶和超声在阿尔茨海默病治疗中的神经调节。

Neuromodulation by nanozymes and ultrasound during Alzheimer's disease management.

机构信息

Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.

Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea.

出版信息

J Nanobiotechnology. 2024 Mar 30;22(1):139. doi: 10.1186/s12951-024-02406-7.


DOI:10.1186/s12951-024-02406-7
PMID:38555420
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10981335/
Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder with complex pathogenesis and effective clinical treatment strategies for this disease remain elusive. Interestingly, nanomedicines are under extensive investigation for AD management. Currently, existing redox molecules show highly bioactive property but suffer from instability and high production costs, limiting clinical application for neurological diseases. Compared with natural enzymes, artificial enzymes show high stability, long-lasting catalytic activity, and versatile enzyme-like properties. Further, the selectivity and performance of artificial enzymes can be modulated for neuroinflammation treatments through external stimuli. In this review, we focus on the latest developments of metal, metal oxide, carbon-based and polymer based nanozymes and their catalytic mechanisms. Recent developments in nanozymes for diagnosing and treating AD are emphasized, especially focusing on their potential to regulate pathogenic factors and target sites. Various applications of nanozymes with different stimuli-responsive features were discussed, particularly focusing on nanozymes for treating oxidative stress-related neurological diseases. Noninvasiveness and focused application to deep body regions makes ultrasound (US) an attractive trigger mechanism for nanomedicine. Since a complete cure for AD remains distant, this review outlines the potential of US responsive nanozymes to develop future therapeutic approaches for this chronic neurodegenerative disease and its emergence in AD management.

摘要

阿尔茨海默病(AD)是一种神经退行性疾病,其发病机制复杂,目前仍缺乏有效的临床治疗策略。有趣的是,纳米医学正在被广泛研究用于 AD 的治疗。目前,现有的氧化还原分子具有高度的生物活性,但存在不稳定性和高生产成本的问题,限制了其在神经疾病中的临床应用。与天然酶相比,人工酶具有高稳定性、持久的催化活性和多功能的酶样特性。此外,通过外部刺激可以调节人工酶的选择性和性能,用于神经炎症的治疗。在这篇综述中,我们重点介绍了金属、金属氧化物、基于碳和基于聚合物的纳米酶及其催化机制的最新进展。强调了纳米酶在诊断和治疗 AD 方面的最新进展,特别是它们在调节致病因素和靶点方面的潜力。讨论了具有不同刺激响应特性的纳米酶的各种应用,特别是用于治疗与氧化应激相关的神经退行性疾病的纳米酶。由于超声(US)具有非侵入性和对深部身体区域的针对性应用,因此它成为了纳米医学的一种有吸引力的触发机制。由于 AD 的完全治愈仍然遥不可及,因此,本篇综述概述了超声响应纳米酶在开发针对这种慢性神经退行性疾病的未来治疗方法及其在 AD 治疗中的应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/35bdb14ca8d4/12951_2024_2406_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/5b9ab14b59d1/12951_2024_2406_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/eed0541c202b/12951_2024_2406_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/426a03cd32a2/12951_2024_2406_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/d5beaef69142/12951_2024_2406_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/c1c6bd14e068/12951_2024_2406_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/04adad7d9921/12951_2024_2406_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/62d028a43844/12951_2024_2406_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/45652d4598ef/12951_2024_2406_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/8ace7373ee81/12951_2024_2406_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/70d79736d9ec/12951_2024_2406_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/ab064e0d56df/12951_2024_2406_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/83e63774acb9/12951_2024_2406_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/04d07d471861/12951_2024_2406_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/72ddf0022ded/12951_2024_2406_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/9dab40c1f319/12951_2024_2406_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/35bdb14ca8d4/12951_2024_2406_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/5b9ab14b59d1/12951_2024_2406_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/eed0541c202b/12951_2024_2406_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/426a03cd32a2/12951_2024_2406_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/d5beaef69142/12951_2024_2406_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/c1c6bd14e068/12951_2024_2406_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/04adad7d9921/12951_2024_2406_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/62d028a43844/12951_2024_2406_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/45652d4598ef/12951_2024_2406_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/8ace7373ee81/12951_2024_2406_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/70d79736d9ec/12951_2024_2406_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/ab064e0d56df/12951_2024_2406_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/83e63774acb9/12951_2024_2406_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/04d07d471861/12951_2024_2406_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/72ddf0022ded/12951_2024_2406_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/9dab40c1f319/12951_2024_2406_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aff1/10981335/35bdb14ca8d4/12951_2024_2406_Fig16_HTML.jpg

相似文献

[1]
Neuromodulation by nanozymes and ultrasound during Alzheimer's disease management.

J Nanobiotechnology. 2024-3-30

[2]
Chemical design of nanozymes for biomedical applications.

Acta Biomater. 2021-5

[3]
Nanozymes in Alzheimer's disease diagnostics and therapy.

Biomater Sci. 2024-9-10

[4]
Designing intelligent bioorthogonal nanozymes: Recent advances of stimuli-responsive catalytic systems for biomedical applications.

J Control Release. 2024-9

[5]
The applications of nanozymes in neurological diseases: From mechanism to design.

Theranostics. 2023

[6]
Catalytic antimicrobial therapy using nanozymes.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-3

[7]
Metal-Organic Framework Derived Nanozymes in Biomedicine.

Acc Chem Res. 2020-7-21

[8]
Design of carbon dots as nanozymes to mediate redox biological processes.

J Mater Chem B. 2023-6-14

[9]
Advances in the application of metal oxide nanozymes in tumor detection and treatment.

Colloids Surf B Biointerfaces. 2024-3

[10]
Metal-organic framework based nanozymes: promising materials for biochemical analysis.

Chem Commun (Camb). 2020-9-29

引用本文的文献

[1]
Nanomedicine in cardiovascular and cerebrovascular diseases: targeted nanozyme therapies and their clinical potential and current challenges.

J Nanobiotechnology. 2025-7-28

[2]
Biomimetic Strategies for Nutraceutical Delivery: Advances in Bionanomedicine for Enhanced Nutritional Health.

Biomimetics (Basel). 2025-7-1

[3]
Next-Generation Drug Delivery for Neurotherapeutics: The Promise of Stimuli-Triggered Nanocarriers.

Biomedicines. 2025-6-13

本文引用的文献

[1]
Ultrasound-Sensitive Intelligent Nanosystems: A Promising Strategy for the Treatment of Neurological Diseases.

Adv Mater. 2024-5

[2]
Functional nanoparticle-enabled non-genetic neuromodulation.

J Nanobiotechnology. 2023-9-7

[3]
Light-gated specific oxidase-like activity of a self-assembled Pt(II) nanozyme for environmental remediation.

Nanoscale. 2023-9-21

[4]
Research progress on reactive oxygen species production mechanisms in tumor sonodynamic therapy.

World J Clin Cases. 2023-8-6

[5]
Stimuli-responsive nanozymes for biomedical applications.

Biomater Sci. 2023-8-22

[6]
Nanomedicine in the Management of Alzheimer's Disease: State-of-the-Art.

Biomedicines. 2023-6-18

[7]
Pathological Impact of Tau Proteolytical Process on Neuronal and Mitochondrial Function: a Crucial Role in Alzheimer's Disease.

Mol Neurobiol. 2023-10

[8]
Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment.

Exploration (Beijing). 2022-7-13

[9]
Peptide-Functionalized Prussian Blue Nanomaterial for Antioxidant Stress and NIR Photothermal Therapy against Alzheimer's Disease.

Small. 2023-10

[10]
The applications of nanozymes in neurological diseases: From mechanism to design.

Theranostics. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索