Suppr超能文献

评估墨西哥零售食品环境的网络协作数据集与行政数据集之间的一致性。

Agreement between a web collaborative dataset and an administrative dataset to assess the retail food environment in Mexico.

机构信息

Center for Population Health Research, National Institute of Public Health, Avenida Universidad 655, Santa María Ahuacatitlán, Cuernavaca, Morelos CP, 62100, Mexico.

Instituto de Comunicação E Informação Científica E Tecnológica Em Saúde / Fundação Oswaldo Cruz - ICICT/FIOCRUZ, Rio de Janeiro, Brazil.

出版信息

BMC Public Health. 2024 Apr 1;24(1):930. doi: 10.1186/s12889-024-18410-3.

Abstract

BACKGROUND

Latin American countries are often limited in the availability of food outlet data. There is a need to use online search engines that allow the identification of food outlets and assess their agreement with field observations. We aimed to assess the agreement in the density of food outlets provided by a web collaborative data (Google) against the density obtained from an administrative registry. We also determined whether the agreement differed by type of food outlet and by area-level socioeconomic deprivation.

METHODS

In this cross-sectional study, we analyzed 1,693 census tracts from the municipalities of Hermosillo, Leon, Oaxaca de Juarez, and Tlalpan. The Google service was used to develop a tool for the automatic acquisition of food outlet data. To assess agreement, we compared food outlet densities obtained with Google against those registered in the National Statistical Directory of Economic Units (DENUE). Continuous densities were assessed using Bland-Altman plots and concordance correlation coefficient (CCC), while agreement across tertiles of density was estimated using weighted kappa.

RESULTS

The CCC indicated a strong correlation between Google and DENUE in the overall sample (0.75); by food outlet, most of the correlations were from negligible (0.08) to moderate (0.58). The CCC showed a weaker correlation as deprivation increased. Weighted kappa indicated substantial agreement between Google and DENUE across all census tracts (0.64). By type of food outlet, the weighted kappa showed substantial agreement for restaurants (0.69) and specialty food stores (0.68); the agreement was moderate for convenience stores/small food retail stores (0.49) and fair for candy/ice cream stores (0.30). Weighted kappa indicated substantial agreement in low-deprivation areas (0.63); in very high-deprivation areas, the agreement was moderate (0.42).

CONCLUSIONS

Google could be useful in assessing fixed food outlet densities as a categorical indicator, especially for some establishments, like specialty food stores and restaurants. The data could also be informative of the availability of fixed food outlets, particularly in less deprived areas.

摘要

背景

拉丁美洲国家在获取食品销售场所数据方面往往受到限制。需要利用允许识别食品销售场所并评估其与实地观察结果一致性的在线搜索引擎。我们旨在评估网络协作数据(谷歌)提供的食品销售场所密度与从行政登记处获得的密度之间的一致性。我们还确定了这种一致性是否因食品销售场所类型和区域社会经济贫困程度而有所不同。

方法

在这项横断面研究中,我们分析了来自埃莫西约、莱昂、瓦哈卡和特拉尔潘的 1693 个普查区。使用谷歌服务开发了一种自动获取食品销售场所数据的工具。为了评估一致性,我们将谷歌获得的食品销售场所密度与国家经济单位统计目录(DENUE)中登记的密度进行了比较。使用 Bland-Altman 图和 concordance correlation coefficient(CCC)评估连续密度,而使用加权 kappa 评估密度三分位数之间的一致性。

结果

在整个样本中,谷歌与 DENUE 的 CCC 表明存在很强的相关性(0.75);按食品销售场所类型划分,大多数相关性从微不足道(0.08)到中度(0.58)。随着贫困程度的增加,CCC 相关性减弱。谷歌与 DENUE 之间的加权 kappa 在所有普查区均显示出高度一致性(0.64)。按食品销售场所类型划分,餐馆(0.69)和特色食品店(0.68)的加权 kappa 显示出高度一致性;便利店/小型食品零售店(0.49)的一致性为中度,糖果/冰淇淋店(0.30)的一致性为适度。在贫困程度较低的地区,加权 kappa 显示出高度一致性(0.63);在贫困程度非常高的地区,一致性为中度(0.42)。

结论

谷歌可用于评估固定食品销售场所密度作为分类指标,尤其是对于某些场所,如特色食品店和餐馆。这些数据还可以提供有关固定食品销售场所供应情况的信息,尤其是在贫困程度较低的地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/852b/10983718/1990c17f597c/12889_2024_18410_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验