Wu Shaojun, Tang Wenjing, Wang Ziyi, Tang Zhuodong, Zheng Peng, Chen Zixuan, Zhu Jun-Jie
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
JACS Au. 2024 Feb 19;4(3):1155-1165. doi: 10.1021/jacsau.4c00002. eCollection 2024 Mar 25.
Mechanical signals in animal tissues are complex and rapidly changed, and how the force transduction emerges from the single-cell adhesion bonds remains unclear. DNA-based molecular tension sensors (MTS), albeit successful in cellular force probing, were restricted by their detection range and temporal resolution. Here, we introduced a plasmonic tension nanosensor (PTNS) to make straight progress toward these shortcomings. Contrary to the fluorescence-based MTS that only has specific force response thresholds, PTNS enabled the continuous and reversible force measurement from 1.1 to 48 pN with millisecond temporal resolution. We used the PTNS to visualize the high dynamic range single-molecule force transitions at cell-matrix adhesions during adhesion formation and migration. Time-resolved force traces revealed that the lifetime and duration of stepwise force transitions of molecular clutches are strongly modulated by the traction force through filamentous actin. The force probing technique is sensitive, fast, and robust and constitutes a potential tool for single-molecule and single-cell biophysics.
动物组织中的机械信号复杂且变化迅速,而力转导如何从单细胞粘附键产生仍不清楚。基于DNA的分子张力传感器(MTS)虽然在细胞力探测方面取得了成功,但受到其检测范围和时间分辨率的限制。在这里,我们引入了一种等离子体张力纳米传感器(PTNS)来直接解决这些缺点。与仅具有特定力响应阈值的基于荧光的MTS不同,PTNS能够以毫秒级的时间分辨率进行1.1至48皮牛的连续且可逆的力测量。我们使用PTNS来可视化在粘附形成和迁移过程中细胞-基质粘附处的高动态范围单分子力转变。时间分辨力迹线表明,分子离合器逐步力转变的寿命和持续时间受到通过丝状肌动蛋白的牵引力的强烈调节。这种力探测技术灵敏、快速且稳健,构成了单分子和单细胞生物物理学的潜在工具。