Yao Lin, Guo Wentao, Wang Zhen, Xiang Shang, Liu Wentan, Ke Guolin
DP Technology, Beijing 100080, China.
Department of Chemistry, University of California, Davis, California 95616, United States.
JACS Au. 2024 Feb 13;4(3):992-1003. doi: 10.1021/jacsau.3c00737. eCollection 2024 Mar 25.
Single-step retrosynthesis in organic chemistry increasingly benefits from deep learning (DL) techniques in computer-aided synthesis design. While template-free DL models are flexible and promising for retrosynthesis prediction, they often ignore vital 2D molecular information and struggle with atom alignment for node generation, resulting in lower performance compared to the template-based and semi-template-based methods. To address these issues, we introduce node-aligned graph-to-graph (NAG2G), a transformer-based template-free DL model. NAG2G combines 2D molecular graphs and 3D conformations to retain comprehensive molecular details and incorporates product-reactant atom mapping through node alignment, which determines the order of the node-by-node graph outputs process in an autoregressive manner. Through rigorous benchmarking and detailed case studies, we have demonstrated that NAG2G stands out with its remarkable predictive accuracy on the expansive data sets of USPTO-50k and USPTO-FULL. Moreover, the model's practical utility is underscored by its successful prediction of synthesis pathways for multiple drug candidate molecules. This proves not only NAG2G's robustness but also its potential to revolutionize the prediction of complex chemical synthesis processes for future synthetic route design tasks.
在计算机辅助合成设计中,有机化学中的单步逆合成越来越受益于深度学习(DL)技术。虽然无模板的DL模型在逆合成预测方面灵活且有前景,但它们常常忽略重要的二维分子信息,并且在节点生成的原子对齐方面存在困难,导致与基于模板和半模板的方法相比性能较低。为了解决这些问题,我们引入了节点对齐的图到图(NAG2G),这是一种基于Transformer的无模板DL模型。NAG2G结合二维分子图和三维构象以保留全面的分子细节,并通过节点对齐纳入产物-反应物原子映射,该映射以自回归方式确定逐个节点的图输出过程的顺序。通过严格的基准测试和详细的案例研究,我们证明了NAG2G在USPTO-50k和USPTO-FULL的庞大数据集上以其卓越的预测准确性脱颖而出。此外,该模型对多种候选药物分子的合成途径的成功预测突出了其实际效用。这不仅证明了NAG2G的稳健性,也证明了其在未来合成路线设计任务中革新复杂化学合成过程预测的潜力。