Chen Ziqi, Ayinde Oluwatosin R, Fuchs James R, Sun Huan, Ning Xia
Computer Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA.
Commun Chem. 2023 May 30;6(1):102. doi: 10.1038/s42004-023-00897-3.
Retrosynthesis is a procedure where a target molecule is transformed into potential reactants and thus the synthesis routes can be identified. Recently, computational approaches have been developed to accelerate the design of synthesis routes. In this paper,we develop a generative framework GRetro for one-step retrosynthesis prediction. GRetro imitates the reversed logic of synthetic reactions. It first predicts the reaction centers in the target molecules (products), identifies the synthons needed to assemble the products, and transforms these synthons into reactants. GRetro defines a comprehensive set of reaction center types, and learns from the molecular graphs of the products to predict potential reaction centers. To complete synthons into reactants, GRetro considers all the involved synthon structures and the product structures to identify the optimal completion paths, and accordingly attaches small substructures sequentially to the synthons. Here we show that GRetro is able to better predict the reactants for given products in the benchmark dataset than the state-of-the-art methods.
逆合成是一种将目标分子转化为潜在反应物从而确定合成路线的过程。最近,已开发出计算方法来加速合成路线的设计。在本文中,我们开发了一个用于一步逆合成预测的生成框架GRetro。GRetro模仿合成反应的逆向逻辑。它首先预测目标分子(产物)中的反应中心,识别组装产物所需的合成子,并将这些合成子转化为反应物。GRetro定义了一套全面的反应中心类型,并从产物的分子图中学习以预测潜在的反应中心。为了将合成子转化为反应物,GRetro考虑所有涉及的合成子结构和产物结构以确定最佳的转化路径,并据此将小子结构依次连接到合成子上。在这里我们表明,在基准数据集中,GRetro比现有最先进的方法能够更好地预测给定产物的反应物。